
An Algorithm for Inferences in a Polytree with Heterogeneous
Conditional Distributions

Robert Dodier
robert dodier@yahoo.com

http://riso.sourceforge.net

Abstract

This paper describes a general scheme for ac-
comodating different types of conditional dis-
tributions in a Bayesian network. The algo-
rithm is based on the polytree algorithm for
Bayesian network inference, in which “mes-
sages” (probability distributions and likeli-
hood functions) are computed. The poste-
rior for a given variable depends on the mes-
sages sent to it by its parents and children, if
any. In this scheme, an exact result is com-
puted if such a result is known for the incom-
ing messages, otherwise an approximation is
computed, which is a mixture of Gaussians.
The approximation may then be propagated
to other variables. Approximations for like-
lihood functions (λ-messages) are not com-
puted; the approximation step is put off un-
til the likelihood function is combined with
a probability distribution — this avoids cer-
tain numerical difficulties. In contrast with
standard polytree algorithms, which can only
accomodate distributions of a few types at
most, this heterogeneous polytree algorithm
can, in principle, handle any kind of con-
tinuous or discrete conditional distribution.
With standard algorithms, it is necessary to
construct an approximate Bayesian network,
in which one then computes exact results;
the heterogeneous polytree algorithm, on the
other hand, computes approximate results in
the original Bayesian network. The most im-
portant advantage of the new algorithm is
that the Bayesian network can be directly
represented using the conditional distribu-
tions most appropriate for the problem do-
main.

1 Introduction

Bayesian networks are successfully used in many fields
to model joint probability distributions. A Bayesian
network directly encodes independence relations, so
that one can immediately determine whether two vari-
ables are independent given some evidence. These in-
dependence relations are crucial to making tractable
the computation of posterior distributions. Almost as
important, the computation of posterior distributions
is much simplified if the conditional distribution for
each variable comes from a certain small set of distri-
butions. The best-known case is that of discrete condi-
tional distributions; several algorithms have been de-
veloped (see, for example, Ref. [8]) for computing pos-
terior distributions, and there are algorithms which
can handle Bayesian networks which contain loops.
Likewise, conditional Gaussian distributions are also
well known [8]. An algorithm is also known [4] for a
Bayesian network in which each conditional distribu-
tion is a mixture of conditional Gaussians (with a lin-
ear dependence of the mean and no dependence of the
variance), but this algorithm applies only to a poly-
tree network. This algorithm has been extended [5] to
a polytree containing both continuous variables (with
mixtures of conditional Gaussian distributions) and
discrete variables.

In many problems, though, the most natural probabil-
ity distributions are neither discrete nor Gaussian, and
constructing approximations within those well-known
classes may yield a representation which is verbose
and which obscures the conceptual basis of the nat-
ural model. It seems desirable, then, to represent the
natural probability distributions directly, and to only
compute approximations (from the class of mixtures
of Gaussians, for example) when necessary. The rep-
resentation problem is easily solved by equipping each
variable with type information and suitable parame-
ters, and the difficult part is the computation of pos-
terior distributions. Only for certain kinds of condi-
tional distributions will it be possible to compute the

partial results necessary for the posterior, so in many
cases some kind of approximation is necessary. The
following approach is taken in this report:

Directly represent the conditional distribu-
tions from the problem domain; compute an
exact result for the posterior when possible,
and otherwise compute an approximation to
the exact result.

Note that this is different from the approach implicit
in present Bayesian network implementations, which is
this: if a distribution does not fall into a well-behaved
category (discrete or Gaussian), make a well-behaved
approximation, then compute an exact posterior using
the approximation.

We want to keep representations in a Bayesian net-
work close to the original problem domain. This will
make it easier to describe and comprehend a Bayesian
network, especially for domain experts who are not
particularly well-acquainted with Bayesian networks;
if one views a Bayesian network as a kind of prob-
abilistic database [8] then it is important that such
people find it intuitive and productive to work with
Bayesian networks. As an important part of this ap-
proach, the conditional distributions in the network
must match the ones which domain experts are accus-
tomed to working with.

The reader will note that the scheme described in this
report is similar in spirit to the adaptive discretization
algorithm described in Ref. [7] and the combination of
exact inference and Gibbs sampling in HUGS [6]. In
each case, exact and numerical methods are combined
to extend Bayesian network inference to a larger class
of problems.

2 The polytree algorithm

The polytree algorithm for computing the posterior
of any variable in a Bayesian network (without loops)
exploits the fact that each variable X separates the
network into two disjoint parts, one above X and one
below X. The computation of the distribution of X
given all the evidence e in the network, pX|e, can be ex-
pressed in terms of “predictive” messages πU,X which
are passed down from each parent U of X, and “like-
lihood” messages λY,X which are passed up from each
child Y of X. These messages are combined to yield
the “predictive support” πX , and the “likelihood sup-
port” λX , and the posterior for X is just the normal-
ized product of πX and λX . The polytree algorithm
computes the posterior of one variable at a time, by
computing the predictive and likelihood support for
that variable, and computing any messages needed. So

long as the evidence variables in the network do not
change, the same messages may be re-used to compute
the posterior distributions for other variables as well.

The polytree algorithm is defined in terms of π’s and
λ’s as follows.1 Denote the distribution of X given
its parents U1, ..., Um as qX . That is, qX is a short-
hand for pX|U1,...,Um

. Let e be the set of all evidence
variables within the network, with e+

X denoting all the
evidence above X in the polytree and e−X denoting all
the evidence below X in the polytree. Also, let e+

X,U

denote the evidence above X which is also above its
parent U , and let e−X,Y denote the evidence below X
which is also below its child Y . Then the π and λ func-
tions are defined in terms of probabilities involving X,
the parents and children of X, and the evidence in the
network.

1. Posterior for variable X:

pX|e(x) ∝ πX(x) λX(x) (1)

2. Predictive support for X:

πX(x) = pX|e+
X

(x)

=
∫

du1 ...

∫
dum qX(x, u1, ..., um)

× πU1,X(u1) ... πUm,X(um) (2)

3. Likelihood support for X:

λX(x) ∝ pe−X |X(x) =
n∏

j=1

λYj ,X(x) (3)

4. Predictive message sent to child Yk:

πX,Yk
(x) = pX|e\e−X,Y

(x) ∝ πX(x)
n∏

j=1
j 6=k

λYj ,X(x)

(4)

5. Likelihood message sent to parent Uk:

λX,Uk
(uk) = pe\e+

X,Uk
|Uk

(uk)

∝
∫

dx

∫
du1...

∫
duk−1

∫
duk+1...

∫
dum

× λX(x) qX(x, u1, ..., um)
m∏

j=1
j 6=k

πUj ,X(uj) (5)

Note that since a likelihood function is not a probabil-
ity density, it need not be normalized to 1; a likelihood

1A particularly clear exposition of the polytree algo-
rithm was given by Driver and Morrell [4].

function may integrate to any positive number, or, in-
deed, it need not be integrable at all. Any positive
multiple of a likelihood function is again a likelihood
function; likelihood functions are unique only up to
a positive constant factor. For this reason, expres-
sions involving likelihood functions are given as por-
portionalities instead of equalities in Eqs. 1 through 5;
the constants of proportionality for Eqs. 1, 2, and 4
are simply those numbers which make the left-hand
sides integrate to 1. The constants of proportionality
for Eqs. 3 and 5 are arbitrary; it is sometimes con-
venient to make the likelihood function integrate to
1. However, for some purposes, the normalization of
likelihood functions does matter, and incorrect results
obtain if the constants of proportionality are ignored.
This problem arises in the computation of π’s and λ’s
when the distributions involved are mixtures.

For some combinations of types of functions, the result
can be computed symbolically. Otherwise, an approx-
imate result must be computed. A general scheme for
computing such approximations is presented in Sec. 4.
However, it seems likely that symbolic results could be
obtained for a wider range of distributions than the
ones mentioned already (discrete, conditional Gaus-
sian, mixtures of conditional Gaussian). A catalog of
the π and λ computations which can be carried out
exactly, or with a close approximation, would be very
useful in Bayesian network implementations. It would
be useful even if not all the functions of interest (πX ,
λX , etc.) can be computed exactly; if some result can
indeed be computed exactly, let us do so, and postpone
approximations until they are finally necessary.

3 Implementation

Software for representation and inference in heteroge-
neous Bayesian networks has been developed as a part
of the riso project [3]. riso employs a polytree algo-
rithm, which lends itself well to the following “lazy”
or “just in time” computational scheme:

To compute the posterior for X (or to com-
pute πX , or λX , or a predictive or likeli-
hood message), compute only those functions
which are required, then use those functions
to compute the quantity of interest.

Probability distributions are represented within riso
as classes in the Java programming language with
reasonably descriptive names, such as Gaussian and
ConditionalDiscrete. To compute the posterior (or
πX , etc.), the inference code first computes any neces-
sary partial results, such as incoming messages. Then
the inference code uses the types of the partial re-
sults to search the local filesystem for a helper class

which contains a function to compute the quantity
of interest. The helper classes are grouped together
into “packages” according to their purpose; all classes
to compute a posterior will be found in the package
computes posterior. Likewise, classes to compute
πX will be found in computes pi, and so on for classes
to compute λX , etc.

For example, if the posterior is to be computed and
πX is represented by an object of class A and λX

is represented by an object of class B, then the in-
ference code attempts to find a helper class named
computes posterior.A B. If no such class exists, the
inference code attempts to locate a class named
computes posterior.S T where S is A or a superclass
of A and T is B or a superclass of B. This scheme makes
it possible to construct code which handles both spe-
cial cases (for the subclasses) or handles general cases
(for the superclasses).

All classes which represent a probability dis-
tribution are subclasses of the abstract class
ConditionalDistribution (if it is conditional) or
Distribution (if it is unconditional). If an exact sym-
bolic result is known for some combination of required
functions, that result should be handled by a helper
class named by the subclasses. Otherwise, we fall back
on a helper class named according to the superclasses.
The approximation scheme described in this document
is implemented by superclass helpers; exact results are
implemented by subclass helpers. At present, riso
can compute exact results in networks with discrete
distributions, and rules for inference with Gaussian
and Gaussian mixture distributions are under develop-
ment. An approach for computing approximate results
is described in the next section.

Since each type of distribution and each type of helper
is represented by a different class, new types can be
added without requiring modification of existing type
definitions, and, above all, without requiring modifi-
cation of the inference algorithm. This allows one to
create the types suitable for particular applications, as
in the example described in Sec. 6.

4 Approximating π’s and λ’s on the fly

To construct an approximation, riso minimizes the
cross-entropy between the target (the posterior for X,
or πX , or a π-message) and a Gaussian mixture. Like-
lihoods are not targets because they need not be nor-
malized nor normalizeable, and so there may be no
well-defined approximation. The cross-entropy calcu-
lation is just

Hp,q(θ) = −
∫

p(x) log q(x|θ) dx (6)

denoting a target density as p and its Gaussian mix-
ture approximation as q; the parameters of the ap-
proximation are denoted θ. The cross-entropy can be
considered the continuous analog of the negative log-
likelihood which appears in approximation problems
based on measured data. Values of p(x) are comput-
ing by directly evaluating the appropriate equation —
in the case of πX and λX,Uk

, this requires numerical
evaluation of integrals. Evaluating the cross-entropy
itself also requires a numerical integration.

The cross-entropy is minimized by an expectation-
maximization (EM) algorithm, also employed by
Poland [9]; the following discussion of convergence of
the algorithm is based on Wu [11]. EM algorithms
are usually described in terms of discrete data, but
the development can be extended readily to the ap-
proximation of a continuous function. Let x denote
the variable or variables on which the target p and its
approximation q are defined, and let y denote the “un-
observed” variable or variables; in the mixture estima-
tion problem, the mixture selector is the unobserved
variable. Consider the expectation of the logarithm of
the joint distribution of x and y under the approxima-
tion model with respect to possible instantiations of
the unobserved variable,

Q(θ, θ′) =
∫

p(x)
∫

q(y|x, θ′) log q(x, y|θ) dy dx

= −Hq,q(θ, θ′)−Hp,q(θ) (7)

writing the cross-entropy of q(y|x, θ′) and q(y|x, θ) as

Hq,q(θ, θ′) = −
∫

p(x)
∫

q(y|x, θ′) log q(y|x, θ) dy dx

(8)
Thus Q is related to the cross-entropy as

Hp,q(θ) = −Hq,q(θ, θ′)−Q(θ, θ′) (9)

Applying Gibbs’ inequality to
∫

q(y|x, θ′) log
q(y|x, θ′)
q(y|x, θ)

dy (10)

we find
Hq,q(θ′, θ′) ≤ Hq,q(θ, θ′) (11)

Let us suppose we have some initial value for the pa-
rameters, denoted θ′. The EM algorithm can be stated
as these two steps:

• E step: Compute Q(θ, θ′).

• M step: Maximize Q over θ and assign the result
to θ′.

These two steps are repeated until θ′ seems not to
change much, or Q seems not to change much, or we

run out of patience. Each two-step iteration decreases
the cross-entropy Hp,q: suppose we have found θ such
that Q(θ, θ′) > Q(θ′, θ′). Then from Eqs. 9 and 11 we
find

Hp,q(θ) < −Hq,q(θ′, θ′)−Q(θ′, θ′)
= Hp,q(θ′) (12)

If, in a sequence of parameter updates we consider θ′

to be a previous value and θ to be new value, the
EM algorithm decreases the cross-entropy Hp,q. If the
entropy of the target exists, the cross-entropy must
have a point of accumulation, since the cross-entropy
decreases with EM iterations and is bounded below
by the entropy of the target distribution p.2 It does
not necessarily follow that the parameters θ likewise
converge, although if the cross-entropy is unchanged,
whether the parameters converge is inconsequential in
the function approximation problem.

The EM algorithm is applied to the mixture approx-
imation problem as follows. Let i denote the compo-
nent selector; the number of components is m. The
parameters are θ = (α1, ..., αm, µ1, ..., µm, σ1, ..., σm).
The joint distribution of x and i is

q(x, i|θ) = αig(x; µi, σi) (13)

Denote the mixture approximation as

q(x|θ) =
m∑

i=1

αig(x;µi, σi) (14)

with g being the Gaussian density function,
g(x; µ, σ) = exp(−(x − µ)2/(2σ2))/(σ

√
2π). With

these definitions, we have

Q(θ, θ′) =
∫

p(x)
m∑

i=1

q(x, i|θ′)
q(x|θ′) log q(x, i|θ) dx

=
m∑

i=1

∫
p(x)

α′ig(x;µ′i, σ
′
i)

q(x|θ′) log αi dx

+
m∑

i=1

∫
p(x)

α′ig(x;µ′i, σ
′
i)

q(x|θ′) log g(x; µi, σi) dx (15)

To maximize Q over the αi, we need consider only
the first term in Eq. 15. Let us define the “integrated
responsibility” as

IRi(θ) =
∫

p(x)
αig(x; µi, σi)

q(x|θ) dx (16)

2However, there exist proper distributions for which the
entropy does not exist, such as p(x) = x−1(log x)−2 for
x > e. It is not clear how large a class of distributions this
is.

Applying Gibbs’ inequality again, we see that

m∑

i=1

∫
p(x)

α′ig(x; µ′i, σ
′
i)

q(x|θ′) log αi dx ≤
m∑

i=1

IRi(θ′) log IRi(θ′)

(17)
thus to maximize Q we choose

αi ← IRi(θ′) (18)

As for the other parameters µi and σi, we seek a sta-
tionary point of the second term in Eq. 15. Computing
the gradient with respect to the µi and σi and setting
the gradient to zero, we obtain

µi ← 1
IRi(θ′)

∫
x p(x)

α′ig(x; µ′i, σ
′
i)

q(x|θ′) dx (19)

σ2
i ←

1
IRi(θ′)

∫
(x− µ′i)

2 p(x)
α′ig(x;µ′i, σ

′
i)

q(x|θ′) dx (20)

In general, one should consider a maximum of Q at
the boundaries of the parameter space as well as any
stationary points within the parameter space. Since
the µi may take on any real value, the only boundary
to worry about is σi = 0. If the target density p is
smooth, none of the components of the mixture ap-
proximation will have zero variance and we can safely
ignore the boundary. On the other hand, if the target
density has nonzero mass at some points (for exam-
ple, if it is a mixture of discrete and smooth densities)
then Q will reach a maximum for some σi = 0; the
required derivatives do not all exist, and the assign-
ment in Eq. 20 is not applicable. In this case, it seems
the best course of action will be to place zero-width
components at the points supporting discrete masses,
and carry out the EM algorithm on the smooth density
which remains.

Since over the course of several iterations of the cross-
entropy minimization algorithm the target function
will be evaluated repeatedly at the same or nearly
the same argument, we can speed up the calcula-
tions by cacheing values of the target function. The
cacheing algorithm is based on a self-balancing binary
tree called a “top-down splay tree” [10]. Each node in
the splay tree stores a key x and its associated function
value f(x); the nodes are ordered by increasing values
of x. When a value of f(x) is needed, the splay tree is
searched for x. If x is contained in some node, the asso-
ciated f(x) is returned. Otherwise, if x is between two
nearby values, the values associated with the neighbors
are interpolated and the result is returned. Otherwise
x is less than the least key in the tree or greater than
the greatest key, or the neighbors of x are too far away;
the value of f(x) is computed, stored in the tree with
key x, and returned.

On the average, searching a top-down splay tree re-
quires a number of operations proportional to the log-
arithm of the number of keys in the tree. These opera-
tions are relatively fast, such as dereferencing memory
addresses and comparing numbers. Since the target
function may be defined in terms of numerical inte-
grations which are relatively time-consuming, using a
splay tree as a cache can yield a significant speed-up.

In this scheme which computes approximations to ex-
plicitly computed target functions, there is substan-
tial bookkeeping. Target functions are constructed by
keeping references to the necessary components func-
tions (π- or λ-messages and the conditional distribu-
tion for a given variable), and then evaluating the com-
ponents (integrating them if necessary) when an out-
put of the target function is needed.

5 Numerical subleties

Finding the “effective support.” To make numer-
ical integrations easier, riso tries to make the region
over which we integrate as small as possible. Let us
refer to a region which contains at least a mass 1− ε,
for a small number ε, as an “effective support” of the
integrand. Note that a region which contains a mass
1 − ε is not unique; riso makes an effort to find the
smallest effective support. It is important to obtain a
small effective support because numerical integrations
may fail if the integrand varies on scales that are much
larger or much smaller than the region over which the
integration is carried out. Also, to initialize a Gaus-
sian mixture approximation (as described below), riso
attempts to find peaks in the target distribution over
the effective support, and this search is more efficient
when the effective support is as small as possible.

Integration algorithm. Numerical integrations in
more than one dimensions are difficult. In the current
implementation, multidimensional integrations are re-
duced to repeated one-dimensional integrations. The
one-dimensional integrations are carried out by an
adaptive region-splitting algorithm based on a Gauss-
Kronrod 21-point rule. (The code is a translation
of the QAGS algorithm from quadpack, a collec-
tion of quadrature algorithms available from www.-
netlib.org.) The adaptive quadrature algorithm can
be “fooled” if the integrand varies on a scale much
smaller than I/42, where I is the length of the inter-
val of integration. For this reason, riso tries to find
the smallest effective support of the integrand, as de-
scribed under the preceding heading.

Initial approximations. Since the EM algorithm
yields only a local minimum of the cross-entropy, the
initial approximation should be not too far from cor-
rect — otherwise we might come to a high local mini-

mum of cross-entropy. In particular, it pays to search
for peaks in the target density, and initialize the ap-
proximation with corresponding peaks. riso con-
structs an initial mixture approximation with a certain
number of components with equal mass and variance,
with their centers placed at regularly spaced intervals;
these components are called “pavers,” since they cover
the support of the target like flagstones. Also, a mix-
ture component is allocated for each peak which is
found in the target density, as described in the follow-
ing paragraphs.

riso implements the following scheme for locating
peaks in the target density. A uniform grid x0, x1 =
x0 +h, x2 = x0 +2h, ..., xn is placed over the effec-
tive support (see below) of the target density. If a
point seems to be a local maximum (i.e., if the density
is greater at xi than at xi−1 and xi+1), then a com-
ponent is added to the initial approximation mixture
with mean equal to xi and standard deviation calcu-
lated by fitting a Gaussian bump to the curvature of
the target density. For convenience, translate from xi

to 0, with u = x − xi. Let q0 denote a function pro-
portional to the Gaussian density with mean 0 and
variance σ2. Denote the mass

∫
q0(u) du as α. Then

q0 and its first two derivatives are

q0(u) =
α

σ
√

2π
exp

(
−1

2
u2

σ2

)
(21)

q′0(u) = − u

σ2
q0(u) (22)

q′′0 (u) =
1
σ2

(
u2

σ2
− 1

)
q0(u) (23)

From this it follows that

q′′0 (0) = −(1/σ2) q0(0) (24)

Now given the curvature of the target density, esti-
mated as

q′′0 (0) ≈ p(xi+1)− 2p(xi) + p(xi−1)
h2

(25)

we can solve for σ to get an approximate standard
deviation:

σ ≈
√
−q0(0)/q′′0 (0) (26)

The mass of the peak is estimated as

α ≈ p(xi)σ
√

2π (27)

The corresponding mixing parameter is set to some-
what more than the estimated mass of the peak: a
mixture component is allocated with its weight pro-
portional to

1
n

+ p(xi)σ
√

2π (28)

where n is the number of peaks plus the number of
pavers in the initial mixture. A paver is assigned a
weight proportional to 1/n.

Delaying integration of likelihood functions.
Since likelihoods need not be normalizeable, they may
not have an effective support smaller than all the reals.
riso does not integrate over a likelihood until there is
a predictive distribution (which is guaranteed to be
normalized) in the integrand. Thus approximations
are never computed for λX or a λ-message, but only
for πX , a π-message, or the posterior of a variable.
This is perhaps too pessimistic; there are examples of
likelihood functions which do have bounded support,
and which are therefore amenable to approximation.

Removing “unneeded” components. If an ac-
curate approximation can be constructed using some
number of components, then over iterations of the EM
algorithm any additional components often become
nearly the same (i.e., having the same mean and vari-
ance) as some other component. riso makes an effort
to find and remove such redundant components, by
comparing the mean and variance of each component
against the mean and variance of every other compo-
nent. If the means are close enough and the variances
are close enough, the components are redundant: one
of them is removed and its weight is given to the other
component. “Close enough” is assessed as follows:

Let r = σ1/σ2, σ2 = 1/(1/σ2
1 + 1/σ2

2), and
∆µ = µ1 − µ2. If ∆µ/σ < β and |r − 1| < γ,
then components 1 and 2 are redundant.

Of course, the numerical factors β and γ can be ad-
justed to suit one’s tastes; there does not appear to
be a principled means of adjusting these parameters.
At present, these are assigned the values β = 0.25 and
γ = 0.2.

If, at the end of an EM iteration, a component has a
mass less than some threshold, it is removed. In the
present implementation, the mass threshold is 0.005.

Other heuristics for reducing the number of compo-
nents in a mixture have been described [2, 1]. The
application in these papers was to mixtures of discrete
distributions, but the basic ideas should also apply to
Gaussian mixtures as well.

Stopping criterion for cross-entropy minimiza-
tion. It is not yet clear how to determine when an
approximation computed by minimizing cross-entropy
is “close enough.” At present, the approximation al-
gorithm runs for a fixed number of cycles; this yields
acceptable results.

6 An example – radar cross-section

The radar cross-section (RCS) network is taken from
another paper [5], which describes a polytree algorithm
for Bayesian networks with continuous nodes (having
mixtures of conditional Gaussians) and discrete nodes.
In the original paper, a Gaussian mixture approxima-
tion for each distribution in the RCS network was com-
puted, and then the inference algorithm was applied
to the resulting approximations. In the present re-
port, the RCS network is represented using the distri-
butions natural to the problem, and approximations
are computed only as needed to obtain the posterior
distributions for the variables of interest.

The conditional distribution for the variable RCS de-
pends on the discrete parent T and the continuous
parent θ:

pRCS|T,θ(RCS, T, θ) = pε(RCS − F (T, θ)) (29)

where the noise distribution pε is a unit-variance Gaus-
sian centered on zero, and the cross-section function F
is

F (T, θ) = A[T](exp(−B[T](θ − π/2))
+ exp(−B[T](θ − 3π/2)))− C[T] (30)

The variable T indexes the parameters A, B, and C,
as follows.

T A B C

1 30 2 0
2 30 10 20
3 20 1.5 10

The prior distribution of θ is uniform over the interval
[0, 2π]. The prior of T is also a uniform distribution,
[1/3, 1/3, 1/3]. A Bayesian network in the riso format
which encodes this description of the RCS network can
be found on the web.3

Let us first consider the posterior distribution of θ,
given RCS = 10. This is a “diagnostic” inference, in
that the observation is downstream from the variable
of interest. First note that F (T = 2, θ) and F (T =
3, θ) both reach a maximum equal to 10 at θ = π/2
and 3π/2, while F (T = 1, θ) reaches a maximum equal
to 30 at θ = π/2 and 3π/2; F (T = 1, θ) is equal to
10 at approximately θ = 0.9, 2.3, 4, and 5.5. These
features are reflected by Figure 1: the two large bumps
at θ = π/2 and 3π/2 are due to the maxima of F for
T = 2 and T = 3, while the smaller bumps occur
where F (T = 1, θ) equals 10. The posterior computed
by riso contains six components, one for each of the
peaks; all of the pavers were automatically removed
from the mixture approximation. The non-Gaussian

3http://riso.sourceforge.net/examples/rcs.riso

0 1 2 3 4 5 6 7
0

0.5

1

1.5

Figure 1: Posterior distribution of θ, given RCS = 10.
Dotted line represents the approximation; dots are
points at which the target (the posterior) was eval-
uated. Note the distinctly non-Gaussian bumps in the
target at θ = π/2 and θ = 3π/2. The target was
evaluated at about 1200 points.

peaks at π/2 and 3π/2 could have been better captured
by two components each — perhaps this indicates the
heuristic for removal of duplicate components is overly
zealous.

Now consider the posterior of RCS given θ = π. This
is a “predictive” inference. In this case there are three
obvious components in the posterior, corresponding to
T = 1, 2, 3, as shown in Figure 2. The masses of the
components are very nearly the same because the prior
over T is uniform.

Figures 1 and 2 show that the mixture approxima-
tions, while acceptable, slightly misrepresent the fea-
tures of the posteriors. Perhaps one could represent
the posterior or πX or π-message by simply giving a
list of points, such as are plotted in the figures. A
list (xi, p(xi)) would be more verbose than a Gaussian
mixture, but easier to compute, and perhaps more ac-
curate as well.

7 Concluding remarks

At present, the most important unsolved problem in
riso is handling networks which contain loops. A
conditioning algorithm is planned, perhaps using algo-
rithms proposed by Xiang [12] to cooperatively detect
loops in a distributed environment. However, it is not
clear that it will be feasible to carry out conditioning
in the presence of hetergeneous distributions — in par-
ticular, conditioning on continuous variables may well
be troublesome.

−30 −25 −20 −15 −10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 2: Posterior distribution of RCS, given θ =
π. Solid line represents the approximation; dots are
points at which the target (the posterior) was evalu-
ated. The target was evaluated at about 500 points.

There remain some numerical problems. While con-
vergence of the EM algorithm is comforting, other al-
gorithms such as the quasi-Newton algorithm might
be faster. Sometimes the EM algorithm finds a lo-
cal optimum which is clearly inferior; perhaps several
random starting points should be tried, and the least
cross-entropy approproximation kept. Also, comput-
ing repeated one-dimensional integrals is known to be
inefficient in three or more dimensions. Quasi-Monte
Carlo algorithms are often superior in high dimensions,
and these algorithms are relatively easy to implement.
It might also be profitable to combine exact inferences
with Gibbs sampling, in the style of HUGS [6].

In closing, let us review the contributions of this re-
port. A general scheme for inference in Bayesian net-
works containing distributions of various types, both
continuous and discrete, has been described. Exact re-
sults are computed when such results are known, and
approximations are computed otherwise. The approx-
imation is applied only to the πX , π-message, or pos-
terior distribution required for a given inference, and
the network is represented using the distributions most
natural and convenient for the problem. New distri-
bution types, as appropriate for the problem at hand,
may be defined without disturbing the existing soft-
ware. A number of implementation details, especially
numerical problems arising in the computation of ap-
proximations, are described. It is hoped that other
researchers will find this approach useful and inspir-
ing.

Acknowledgements. This research has been sup-
ported by grants from the Link Foundation and the

American Society of Heating, Refrigeration, and Air-
conditioning Engineers.

References

[1] M. Baioletti. Metodi computazionali per l’infe-
renza bayesiana con dati incompleti. PhD thesis,
Universitá degli Studi di Perugia, 1996.

[2] R.G. Cowell, A.P. Dawid, and P. Sebastiani.
A comparison of sequential learning methods
for incomplete data. In J.M. Bernardo, editor,
Bayesian Statistics 5: Proceedings of the Fifth Va-
lencia International Meeting, pages 533–542. Ox-
ford: Clarendon Press; New York: Oxford Uni-
versity Press, 1996.

[3] R. Dodier. RISO: An implementation of dis-
tributed belief networks. In Proc. AAAI Sym-
posium on AI in Equipment Service, 1999. To
appear.

[4] E. Driver and D. Morrell. Implementation of con-
tinuous Bayesian networks using sums of weighted
Gaussians. In P. Besnard and S. Hanks, editors,
Proc. 11th Conf. Uncertainty in Artificial Intelli-
gence. San Francisco: Morgan Kaufmann, 1995.

[5] E. Driver and D. Morrell. A new method for
implementing hybrid Bayesian networks. Unpub-
lished technical report, 1998.

[6] U. Kjaerulff. HUGS: Combining exact infer-
ence and Gibbs sampling in junction trees. In
P. Besnard and S. Hanks, editors, Proc. 11th
Conf. Uncertainty in Artificial Intelligence. San
Francisco: Morgan Kaufmann, 1995.

[7] A. Kozlov and D. Koller. Nonuniform dynamic
discretization in hybrid networks. In D. Geiger
and P. Shenoy, editors, Proc. 13th Conf. Un-
certainty in Artificial Intelligence. San Francisco:
Morgan Kaufmann, 1997.

[8] J. Pearl. Probabilistic reasoning in intelligent sys-
tems. San Francisco: Morgan Kaufmann, 1988.

[9] W. Poland. Decision analysis with continuous
and discrete variables. PhD thesis, Stanford Uni-
versity, Dept. of Engineering-Economic Systems,
1994.

[10] D. Sleator and R. Tarjan. Self-adjusting binary
search trees. J. Assoc. Computing Machinery,
32(3):652–686, 1985.

[11] C.F.J. Wu. On the convergence properties of the
EM algorithm. Annals of Statistics, 11(1):95–103,
1983.

[12] Y. Xiang. Verification of DAG structures in coop-
erative belief network based multi-agent systems.
Networks, 31:183–191, 1998.

