
UNIFIED PREDICTION AND DIAGNOSIS IN

ENGINEERING SYSTEMS BY MEANS OF DISTRIBUTED

BELIEF NETWORKS

by

ROBERT H. DODIER

M.S., University of Colorado, Boulder, Colorado, 1995

B.A., Portland State University, Portland, Oregon, 1986

A dissertation submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Civil, Environmental, and Architectural Engineering

1999

This dissertation for the Doctor of Philosophy degree by

Robert H. Dodier

has been approved for the

Department of

Civil, Environmental, and Architectural Engineering

by

Jan F. Kreider

Michael J. Brandemuehl

Date

Dodier, Robert H. (Ph.D., Civil Engineering)

Unified Prediction and Diagnosis in Engineering Systems by means of Distributed Belief

Networks

Dissertation directed by Professor Jan F. Kreider

This dissertation describes the theory, implementation, and application of a class

of graphical probability models, called distributed belief networks, for the purposes of

prediction, diagnosis, and calculation of the value of information in engineering systems.

Probability models have the very desirable property that several useful operations can

be stated as the computation of probability distributions; prediction and diagnosis cor-

respond to the calculation of certain posterior distributions, and the value of information

can be interpreted as the calculation of an average decrease of entropy of a posterior

distribution. These operations, and others, are different ways of looking at a single

model — there is no need for separate models for different operations.

A belief network, for the purposes of this dissertation, is a directed graph associated

with a set of conditional probability distributions. Each node in the graph corresponds

to a variable in a probability model. A distributed belief network is a belief network im-

plemented on multiple processors. Posterior distributions for variables in the belief net-

work are computed by a message-passing algorithm called the polytree algorithm. For

the purpose of modeling engineering systems, it is important that information about the

problem domain be represented as the probability distributions natural for the problem,

and the polytree algorithm is easily adapted to handling many kinds of distributions.

However, the algorithm has only limited applicability to graphs containing undirected

cycles.

Some illustrative applications are described, including several sensor models, a model

for a mixing box damper, a heating coil, and a belief network to analyze energy use for

the purpose of selecting a rate structure.

iv

ACKNOWLEDGEMENTS

I dedicate this dissertation to my mother and father,

Jean Hernandez Dodier and Victor Dodier.

This research was supported by grants from the Edwin Link Foundation, the fam-
ily of Gustave Larson, and the American Society of Heating, Refrigeration, and
Air-conditioning Engineers.

Xing Hai-Yun, Taner Bilgic, Markus Laun, and Michelle Franz aided this project
by allowing me to install riso on their sites. My heartfelt thanks to them.

Finally, special thanks to Margaret Bailey, Kriengkrai Assawamartbunlue, and the
members of my committee, especially Peter Curtiss, for insightful discussions.

LIST OF FIGURES

1.1 riso sites worldwide . 2

1.2 A distributed belief network for a simple reasoning problem 4

2.1 Graphical model terminology . 31

2.2 Two illustrations of the d-separation criterion 34

2.3 Belief networks to illustrate generalizations of Bayes’ rule 38

2.4 A distributed belief network as a distributed database 43

4.1 An example of a distributed belief network 58

4.2 A d.b.n. for monitoring geographically distributed equipment 71

4.3 π- and λ-messages transmitted within a d.b.n. 75

5.1 A typical polytree belief network . 80

5.2 A belief network which is not a polytree 81

5.3 A typical node X in a polytree . 81

5.4 Messages associated with a typical node 82

5.5 Evidence in a belief network . 83

6.1 A model for “strange magnitude” . 102

6.2 Posterior for α given Xact = 100 . 103

6.3 Alternative groups of variables . 104

6.4 A simple sensor model . 106

6.5 A sensor model with temporal dependence 109

6.6 A model of redundant sensors . 111

6.7 A sensor model for a predictable variable 115

6.8 Measurement of related variables . 116

LIST OF FIGURES vi

6.9 Scatterplot of T–RH data . 118

6.10 Posterior for RH given T̂ = 60 . 119

6.11 Spline approximation to pT |e . 120

6.12 Learning a predictive sensor model . 121

7.1 A slice of a belief network to estimate energy use 125

7.2 Energy predictors grouped to compute a daily maximum 127

7.3 Combining daily maxima . 128

7.4 A belief network for which the polytree algorithm fails 130

7.5 Simulation of typical electrical demand in the month of July 135

7.6 Distributions over hourly horizontal insolation 136

7.7 Posterior distributions for the maximum demand during peak, mid-peak,

and off-peak hours . 137

7.8 C.d.f.’s for six instances of the posterior of maximum peak demand . . . 138

8.1 Schematic diagram of a heating coil . 142

8.2 A belief network for the heating coil . 143

8.3 Two posterior distributions of the Tdb,lvg multiplier 148

8.4 Schematic diagram of a typical mixing box 150

8.5 Belief network for the mixing box damper 151

8.6 Repeated weak evidence eventually supports a strong conclusion 158

8.7 Posterior for ẐTO[6] given D̂P [6] = 4.1, etc. 160

9.1 Generic representation of a belief network for calibration in situ 162

9.2 A belief network to allow communication between sites 164

9.3 A belief network to infer equipment type from observations 165

G.1 Directed graph representation of a dynamical system 221

LIST OF TABLES

1.1 Parameters for observation models . 7

6.1 A model for sensor status transitions . 109

6.2 Numerical values for the sensor transition model 110

6.3 Parameters of the RH |T model . 118

7.1 Energy cost schedule for Utility A . 139

7.2 Energy cost schedule for Utility B . 139

7.3 Demand cost schedule for Utility A . 140

7.4 Demand cost schedule for Utility B . 140

7.5 Comparison of total (energy and demand) costs 140

8.1 Ranking variables in the heating coil model by MI 146

8.2 Mixing-box data collected in the HVAC laboratory 156

8.3 Posterior for S?[6] with increasing evidence 156

A.1 Productions of the riso belief network grammar 177

A.2 Productions of the grammar for variables 178

A.3 Productions of the grammar for the conditional discrete distribution . . 178

A.4 Productions of the grammar for the unconditional discrete distribution . 178

A.5 Productions of the grammar for the Gaussian distribution 178

A.6 Productions of the grammar for an unconditional mixture distribution . 179

A.7 Productions of the grammar for monotone spline distribution 179

A.8 Productions of the grammar for a density based on a regression model . 179

CONTENTS

Chapter 1: An intercontinental belief network 1

1.1 Has Elvis Presley come back for a visit? 1

1.2 Assignment of numerical probabilities in observation models 5

1.3 Calculation of degrees of belief . 8

1.4 Comments on the “Where is Elvis?” problem 13

1.5 What’s to come in the dissertation . 14

Chapter 2: Introduction to graphical probability models 17

2.1 Generalizing logic into probability . 18

2.1.1 A useful elementary result: the disjunction rule 22

2.2 Properties of joint, conditional, and marginal densities 23

2.3 Assigning numerical values to probability distributions 24

2.3.1 Numerical probabilities via exchangeable labels 24

2.3.2 Heuristics for expression of partial knowledge 26

2.4 Shortcomings of probability . 28

2.5 Conventions of notation . 29

2.6 Elements of graphical probability models 30

2.6.1 A graphical criterion for independence 32

2.7 Probabilistic interpretation of prediction and diagnosis 33

2.7.1 Revision of hypotheses . 35

2.7.2 Prediction and “What if?” scenarios 35

2.7.3 Diagnosis and ruling out hypotheses 36

2.7.4 Function inversion . 39

2.7.5 Value of information . 40

2.8 Probability is the glue that holds the world together 41

CONTENTS ix

2.8.1 Express relation of one variable to others with conditional prob-

ability . 42

2.8.2 Treat uncertainty in measurements, parameters, and hypotheses

symmetrically . 42

2.8.3 “Think locally, compute globally” 43

2.8.4 Laws of probability permit incremental development 44

2.9 A glance forward . 44

Chapter 3: On the concept of probability 45

3.1 Historical remarks . 45

3.2 On induction . 52

3.3 Hume’s critique of induction . 52

3.4 A probabilistic interpretation of ‘falsifiability’ 54

Chapter 4: Overview of the riso belief network system 57

4.1 Features of the riso system . 60

4.1.1 Representation of belief networks with heterogeneous distributions 60

4.1.2 Inference in polytrees with arbitrary distributions 60

4.1.3 Implementation of distributed belief networks 61

4.2 Communication in distributed belief networks 63

4.2.1 Local versus global control of communication. 63

4.2.2 Publishing information as distributed belief networks. 63

4.2.3 Computing inferences in distributed belief nets 66

4.3 Solutions to communications problems 67

4.3.1 Locating and connecting belief networks on different hosts 67

4.3.2 Communicating π- and λ-messages between belief networks . . . 67

4.3.3 Coping with communication failures 68

4.3.4 Security issues . 69

4.3.5 Parallel computation . 69

4.4 Example: Monitoring a Distributed System 69

CONTENTS x

4.5 Where is the magic hidden? . 76

Chapter 5: An inference algorithm for heterogeneous polytrees 77

5.1 Overview of the inference problem . 77

5.2 Additional nomenclature of polytrees . 79

5.3 The polytree inference algorithm . 83

5.3.1 π’s and λ’s for mixture distributions 86

5.4 Implementation of the inference algorithm 87

5.5 Approximating π’s on the fly . 88

5.6 Numerical subtleties of cross-entropy calculations 93

5.7 Constructing monotone spline approximations 96

5.8 Exploiting parallelism for faster inferences 98

5.9 Extending the polytree algorithm . 98

Chapter 6: Belief network idioms for sensors 100

6.1 A model for the “strange magnitude” problem 101

6.2 Alternative groupings . 102

6.3 A simple sensor model . 105

6.4 A sensor model with temporal dependence 108

6.5 A model of redundant sensors . 111

6.6 Modeling a predictable measured variable 114

6.7 A model of correlated measured variables 116

6.8 Learning a predictive sensor model . 120

Chapter 7: Selecting rates to minimize energy and demand costs 122

7.1 Specification of a belief network for rate selection 124

7.1.1 On the stability of a transfer function model 126

7.2 A conditioning algorithm for inferences in the building model 130

7.2.1 Computation of a distribution over maximum energy demand . . 132

7.3 Computing expected costs using rate schedules 132

CONTENTS xi

7.3.1 General approach for cost calculations 132

7.3.2 Computation of costs for the model building 135

Chapter 8: Additional belief network applications 141

8.1 A model of a heating coil . 141

8.1.1 Assessing value of information of measurements by MI 144

8.1.2 Is Tdb,lvg higher or lower than expected? 147

8.2 A model of a mixing box damper . 149

8.2.1 Local models in the damper belief network 150

8.2.2 Belief revision in a temporal belief network 155

8.2.3 Strengthening repeated weak evidence 157

8.2.4 Predictions from the damper belief network 159

Chapter 9: Concluding remarks 161

9.1 Calibration in situ and other learning applications 161

9.2 In closing . 166

Appendix A: The riso belief network grammar 176

A.1 Implementation details . 177

A.1.1 Temporal dependence . 180

A.1.2 Arbitrary continuous/discrete conditional densities 180

A.1.3 Identifier scope rules . 181

A.1.4 Extending the class Variable . 182

A.2 Additional remarks . 183

Appendix B: riso communications architecture 184

Appendix C: π- and λ-messages for some distributions 188

C.1 A note on post-processing of mixture distributions 189

C.2 Symbolic results for posterior distributions 189

C.2.1 Both πX and λX are discrete. 190

CONTENTS xii

C.2.2 Discrete πX and arbitrary λX . 190

C.2.3 Both πX and λX are Gaussian. 190

C.2.4 Both πX and λX are mixtures of Gaussians. 190

C.2.5 Both πX and λX are general mixtures. 190

C.2.6 Both πX and λX are arbitrary. 191

C.3 Symbolic results for πX calculations . 191

C.3.1 Identity with one arbitrary parent. 192

C.3.2 Sum of Gaussian variables. 192

C.3.3 Sum of mixtures of Gaussian variables. 192

C.3.4 Linear combination of Gaussian variables. 192

C.3.5 Linear combination of mixtures of Gaussian variables. 193

C.3.6 Product of lognormal variables. 193

C.3.7 Ratio of lognormal variables. 193

C.3.8 Maximum of arbitrary distributions. 194

C.3.9 Minimum of arbitrary distributions. 194

C.3.10 Disjunction of binary variables. 195

C.3.11 Exclusive-or of binary variables. 195

C.3.12 “Exactly one” of binary variables. 196

C.3.13 Indexed distribution with discrete π-messages. 196

C.3.14 Conditional Gaussian with Gaussian π-messages. 197

C.3.15 Conditional discrete with discrete parents. 197

C.3.16 [*] Autoregressive model with Gaussian parent. 198

C.3.17 Sum of arbitrary distributions. 198

C.3.18 Product of distributions supported on (0, +∞). 199

C.3.19 Ratio of distributions supported on (0, +∞). 200

C.3.20 Functional relation with arbitrary π-messages. 200

C.3.21 Regression model with Gaussian inputs. 201

C.3.22 Regression model with mixtures of Gaussians inputs. 202

C.3.23 Regression model with arbitrary inputs. 203

CONTENTS xiii

C.3.24 Classifier with arbitrary inputs. 203

C.3.25 Indexed distribution with arbitrary parents. 203

C.3.26 Arbitrary conditional distribution with arbitrary parents. 204

C.4 Symbolic results for λX calculations . 204

C.4.1 All λ-messages are discrete. 204

C.4.2 All λ-messages are Gaussian. 204

C.4.3 All λ-messages are mixtures of Gaussians. 205

C.4.4 All λ-messages are general mixtures. 205

C.4.5 All λ-messages are arbitrary distributions. 206

C.5 Symbolic results for π-messages . 207

C.6 Symbolic results for λ-messages . 207

C.6.1 Conditional discrete with discrete likelihood and discrete π-messages.207

C.6.2 Conditional Gaussian with Gaussian likelihood and Gaussian π-

messages. 208

C.6.3 Conditional discrete with discrete likelihood and no π-messages. 208

C.6.4 [*] Autoregressive model with Gaussian likelihood and Gaussian

π-messages. 208

C.6.5 Indexed distribution, variable is evidence, and no π-messages. . . 209

C.6.6 Indexed distribution, variable is evidence, and discrete π-messages.209

C.6.7 Conditional discrete with arbitrary likelihood and no π-messages. 210

C.6.8 Functional relation with arbitrary likelihood and π-messages . . 211

C.6.9 Arbitrary conditional distribution, variable is evidence, arbitrary

π-messages. 211

C.6.10 Arbitrary conditional distribution, arbitrary likelihood, arbitrary

π-messages. 212

Appendix D: Notes on monotone cubic splines 213

Appendix E: Notes on conditional Gaussian distributions 215

E.1 Definition of conditional Gaussian models 215

CONTENTS xiv

E.2 Computing π- and λ-messages for conditional Gaussians 217

Appendix F: Miscellaneous formulas for mutual information 219

F.1 An identity relating MI and average conditional MI 219

F.2 Kullback-Leibler divergence between two Gaussian densities 220

Appendix G: On invariant measures of discrete-time systems 221

Chapter 1

AN INTERCONTINENTAL BELIEF NETWORK

By way of introduction, let us consider a reasoning problem solved by a distributed

belief network. Like a proper epic, this dissertation begins in media res.

1.1 Has Elvis Presley come back for a visit?

American cultural icon Elvis Presley (1935–77) was a middling talent — “I don’t know

much about music. In my business, you don’t have to” — but that proved no obstacle to

his posthumous veneration as the King of Rock ’n’ Roll. Every now and then, it seems,

he comes back to visit our world from the atemporal realm where he dwells with aliens,

Sasquatch, and Princess Grace. Or so the tabloids proclaim; amidst an undifferentiated

gangue of conflicting reports, how are we to extract the nuggets of truth? I will argue

in Chapter 2 that the proper way to reason in about uncertain propositions is to use the

laws of probability. To navigate the shoals of unsteady information, I’ve constructed a

reasoning system called riso which we can use to compute degrees about propositions

such as “Has Elvis come back for a visit?”

We humans can reason quickly and accurately when there are just a few facts to

take into account and there is a straightforward relation between a proposition and

the background information before which it is asserted. But our capacity to reason

carefully in the presence of ambiguity and conflicting sources of information degrades

quickly with the number of sources and the decreasing precision of relations, so we need

a little help. riso is a system to aid reasoning in spatially and temporally extended

problems, which implements a class of graphical probability models called distributed

belief networks. A belief network is just what the name suggests — a graph to compute

beliefs, and a distributed belief network is a set of belief networks in different places

AN INTERCONTINENTAL BELIEF NETWORK 2

Portland
45 N, 123 W

40 N, 105 W
Boulder

Cambridge
42 N, 71 W

Istanbul
41 N, 29 E

Lampertheim
50 N, 9 E

Figure 1.1: Our home planet viewed from about 10,000 km away, showing riso sites

around the world. As the number of sites is increasing 400% per year, we can expect

riso installations to soon outnumber elementary particles, not to mention available IP

addresses.

linked together by Internet communications. At present, riso belief network software

has been installed across vast reaches of the Northern Hemisphere (see Figure 1.1) and

one hopes that riso will soon find a home in the southern latitudes as well.

I’ve constructed a distributed belief network (Figure 1.2) to help us reconcile claims

about the presence or absence of Elvis Presley. There are news reports of Elvis from

Portland, Oregon, from Istanbul, from Cambridge, Massachussets, and from Lam-

pertheim, Germany. By some good fortune, riso is running in each of these locations.

As shown in Figure 1.2, in each location there is a belief network to assess any evidence

observed locally concerning the presence of Elvis there, and a belief network in Boulder

to integrate the reports from different locations. The combination of belief networks in

AN INTERCONTINENTAL BELIEF NETWORK 3

various locations creates a single, distributed belief network.

Each oval, called a node in the graphical jargon, in Figure 1.2 represents a proposi-

tion, such as A =“A cab driver says she saw Elvis.” Each arrow shows a dependence of

one proposition on another. For example, whether A occurs depends on whether Elvis

is in the same city as the cab driver. If Elvis is there, it’s much more likely that the cab

driver will report that she saw him. But even if he’s not there, the cab driver might

be mistaken or deliberately try to mislead people by saying that she saw Elvis all the

same. In each city, I’ve constructed a model of observations which could be made of the

King, and these observations are assumed to be independent if one knows whether or

not Elvis is in town. For example, if I know that Elvis is in Lampertheim, then knowing

that he’s been sighted at the tavern doesn’t tell me anything about whether someone

might see him at the hotel. Thus the model for each observation can be constructed

separately from the model of every other observation, even the ones which can occur in

the same locale. Once the models for all observations in all locations are constructed,

the laws of probability tell us how to combine the evidence to come up with a global

summary. But we’re getting ahead of ourselves; in §1.3 we’ll return to the problem of

computing inferences in the distributed belief network.

The models for observations in Portland, Lampertheim, and Istanbul all have the

same simple form: given that Elvis is in town or is not, each observation is more or less

likely. The model for Cambridge is a little more complicated. The cab driver has been

talking to a friend, and the friend spoke with another friend. Their reports depend on

the cab driver’s, but their testimony is weakened by their distance from the scene of the

crime, so to speak. Of course, just how much weaker is their testimony is determined

by the laws of probability.

Despite his aethereal state, Elvis can still be in only place at a time, so of the

propositions “Elvis is in Portland,” “Elvis is in Istanbul,” etc., at most one can be true.

Let us abbreviate the propositions “Elvis is in...” by the first letter of each city, so we

AN INTERCONTINENTAL BELIEF NETWORK 4

Elvis is somewhere

At the Hagia Sofia

Istanbul

Lampertheim

Elvis is in town

Elvis is in town

In a hotel

In a tavern

Cambridge, MA

At 24-hour church

At Powell’s Books

Portland, OR

At New Saigon

Elvis is in town

Elvis is in town

Cab driver’s report

Second-hand report

Third-hand report

Boulder

Figure 1.2: A distributed belief network for a simple reasoning problem. Has Elvis

Presley come back for visit to our temporal domain? In the text, the abbreviations P ,

C, I, L, and E correspond to “Elvis is in Portland,” “Elvis is in Cambridge,” “Elvis

is in Istanbul,” “Elvis is in Lampertheim,” and “Elvis is somewhere in the world,”

respectively.

AN INTERCONTINENTAL BELIEF NETWORK 5

have P , C, L, and I. Then

exactly one of P, C, L, I = (P ∧ ¬C ∧ ¬L ∧ ¬I)

∨(¬P ∧ C ∧ ¬L ∧ ¬I)

∨(¬P ∧ ¬C ∧ L ∧ ¬I)

∨(¬P ∧ ¬C ∧ ¬L ∧ I) (1.1)

denoting conjunction, disjunction, and negation as ∧, ∨ and ¬, respectively. Given that

can quantify our beliefs about the elementary propositions P , C, L, and I, how much

should we believe the compound proposition? It turns out (§2.1) that any compound

proposition can be expressed in terms of conjunction and negation alone, and that these

two operations correspond to simple functions of the probabilities of the elementary

propositions. In §1.3 we’ll use the conjunction and negation functions to compute

numerical values of the compound proposition, “Is Elvis in exactly one of the cities?”

1.2 Assignment of numerical probabilities in observation models

The belief network shown in Figure 1.2 requires the specification of a conditional proba-

bility for every node which has arrows leading into it, and an unconditional probability

for every node which has no arrows leading into it. These specifications are the basis of

the calculations which are presented in §1.3.

Let us begin with the so-called root nodes, that is, the ones which have no arrows

leading into them. In the absence of any evidence, we believe it is unlikely that Elvis

is in Lampertheim, Cambridge, or Istanbul, but it’s a little more likely that he is in

Portland — after all, it is the home of the 24 Hour Church of Elvis. Let us make the

following assignments.

Pr(P) = 0.01, Pr(C) = 0.001, Pr(L) = 0.001, Pr(I) = 0.001 (1.2)

The corresponding assignment to the negation of L is just 1 − Pr(L), likewise for the

other cities.

AN INTERCONTINENTAL BELIEF NETWORK 6

The conditional probability of the compound proposition E is computed from the

probabilities of P , C, L, and I. In §§2.1–2.1.1 we’ll see that there are simple formulas

for the conjunction and disjunction of independent propositions, and for negation. Cal-

culating the probability of the compound proposition E =“Exactly one of P, C,L, I,”

we find

Pr(exactly one of P, C, L, I) = Pr(P)(1− Pr(C))(1− Pr(L))(1− Pr(I))

+(1− Pr(P)) Pr(C)(1− Pr(L))(1− Pr(I))

+(1− Pr(P))(1− Pr(C)) Pr(L)(1− Pr(I))

+(1− Pr(P))(1− Pr(C))(1− Pr(L)) Pr(I)(1.3)

As evidence is entered into the belief network, the probabilities Pr(P), Pr(C), etc., are

replaced by Pr(P |evidence in Portland), Pr(C|evidence in Cambridge), and so on, but

the computation in Eq. 1.3 is carried through just the same.

The observation models in each city have a common form. Each one specifies the

probability p that the observed evidence occurs when Elvis is in town, and the proba-

bility q that the observed evidence occurs when Elvis is not in town. Such a model can

be represented in tabular form like this:

Observed evidence Looked for, didn’t see evidence

Elvis in town p 1− p

Elvis not in town q 1− q

The parameters p and q are assigned as shown in Table 1.1. In general, some character-

istic of Elvis has been identified, and then we check to see if we find that characteristic

somewhere in each city. Each characteristic is something we’re more likely to find

associated with Elvis than otherwise, so every p is greater than the corresponding q.

To complete the specification of the Elvis belief network, it remains only to assess

the reliability of the cab driver’s friends. A second-hand report can be considered as

evidence of the first-hand report, and so a tabular representation analogous to the one

shown above for direct observations can be constructed. A third-hand report is evidence

AN INTERCONTINENTAL BELIEF NETWORK 7

Table 1.1: Parameters for observation models.

Observation p q

Sunglasses at hotel (L) 0.7 0.5

Sequins at tavern (L) 0.2 0.05

Sequins at Hagia Sofia (I) 0.2 0.01

Sequins at Powell’s Books (P) 0.1 0.01

Sideburns at New Saigon (P) 0.33 0.25

Velvet painting speaks (P) 0.5 0.0001

Cab driver’s report (C) 0.1 0.0001

of the second-hand report, and so on, as far as we wish to carry the process. Let’s assume

that friend number 1 is a little too happy to get his name in the paper:

Friend 1, positive report Friend 1, negative report

Cab driver’s positive report 1 0

Cab driver’s negative report 0.1 0.9

In this little table and the next one, “positive report” is a shorthand for “cab driver

says she saw Elvis,” likewise “negative report” stands for “cab driver says she did not

see Elvis.” Even if the cab driver gives a negative report, friend 1 might relay it as a

positive report. Friend number 2 is more reliable:

Friend 2, positive report Friend 2, negative report

Friend 1, positive report 0.999 0.001

Friend 1, negative report 0.001 0.999

Later on (§1.3) we’ll take some testimony from friend 2, but we’ll see that the reliability

of friend 2 is mostly useless, due to the intervening unreliability of friend 1.

We’re now equipped to carry out some inferences in the belief network shown in

Figure 1.2.

AN INTERCONTINENTAL BELIEF NETWORK 8

1.3 Calculation of degrees of belief

Given the structure and the numerical assignments described in preceding sections, let us

see how different observations affect our beliefs about the presence of Elvis. We sit down

in front of a computer in Boulder (or maybe we telnet from a nearby mountain peak)

and tell riso to connect our local belief network, labeled “Boulder” in Figure 1.2, with

the belief networks in other cities. Initially no observations have been made anywhere

— how does that affect the degree of belief calculated for the proposition “Elvis is in

town” in each locale? In the absence of an observation one way or the other, the degree

of belief for each “Elvis is in town” node is just the prior probability that was assigned

in §1.2. So the node “Elvis is somewhere” in the Boulder belief network is told that its

parents have been assigned the probabilities given in Eq. 1.2. We then use Eq. 1.3 to

calculate Pr(E) = 0.01293. In the absence of any evidence, the probability that Elvis

has come back is very low — no surprise there.

We’ll ask riso to notify us if there are any changes upstream from Boulder which

give us the opportunity to calculate a new probability of Elvis’ return. By studying the

connections in Figure 1.2, riso can tell which calculated probabilities need to be revised

when evidence is entered or taken away somewhere in the distributed belief network. It

turns out that simply being connected by some series of arrows is not the proper way to

determine what propositions are affected; the appropriate criterion, described in §2.6.1,

is called d-separation. Whenever evidence is entered or taken away in a node which is

not d-separated from E, we need to recalculate the probability of E.

Some observations are made in Lampertheim — the concierge at the hotel in Lam-

pertheim notices a mysterious man wearing sunglasses in the lobby, but the bartender at

the tavern hasn’t seen anyone wearing a gold sequin suit. If Elvis were in Lampertheim,

he would probably be wearing sunglasses, but lots of people wear sunglasses, so that’s

rather weak evidence for Elvis. Likewise, failing to see anyone in gold sequins isn’t proof

of his absence — maybe Elvis is wearing his toreador costume. According to model of

AN INTERCONTINENTAL BELIEF NETWORK 9

observations in Lampertheim, we have

Pr(“someone wearing sunglasses”|L) = 0.7

Pr(“someone wearing sunglasses”|¬L) = 0.5

for the probability of the hotel observation given different values of the parent L, and

Pr(“no-one in gold sequins”|L) = 0.8

Pr(“no-one in gold sequins”|¬L) = 0.95

for the probability of the tavern observation given the parent L. Functions of the

form shown here, with the proposition of interest appearing as a variable on the right-

hand side of the bar in a conditional probability, are called likelihood functions. We

should combine these two functions of L by simply multiplying them together — this

is a special case of the general rule for propagating information from evidence upward

from children to their common parent; the general rule is described in §5.3. For the

summarized likelihood, then, we simply compute

likelihood(L) = 0.7 · 0.8 = 0.56

likelihood(¬L) = 0.5 · 0.95 = 0.475

To compute the posterior probability of L, the likelihood is combined with the prior for

L in a simple way — multiply together the prior and the likelihood, and normalize so

that the result sums to 1. Again, this is a particular example of a general rule described

in §5.3. For the posterior, we have

Pr(L|sunglasses = yes, sequins = no) =
0.001 · 0.56

0.999 · 0.475 + 0.001 · 0.56
= 0.001179

When the observations are entered into the Lampertheim belief network, Boulder is

notified that something has changed, and the updated probability for L is sent along.

Upon receiving the message about L, we recompute E (using Eq. 1.3) and find that

Pr(E|Lampertheim evidence) = 0.01311. Hardly any change at all — note that if

the likelihood function for L were constant, there would be no change at all. So the

AN INTERCONTINENTAL BELIEF NETWORK 10

likelihood function supplies information to the extent that different values are assigned

for L and ¬L; the greater the difference, the greater the changes in the posteriors for L

and E.

Over in Cambridge, the cab driver reports that she has seen Elvis. From this, the

likelihood function for C is

likelihood(C) = 0.1, likelihood(¬C) = 0.0001

The ratio 0.1/0.0001 (called the likelihood ratio) equals 1000, which shows that the

observation is quite informative. The likelihood for C is combined with the prior to

yield the posterior for C by multiplication and normalization, just as for L. This yields

Pr(C|cabbie reports seeing Elvis) =
0.001 · 0.1

0.999 · 0.0001 + 0.001 · 0.1
= .5003

When the cab driver’s report is relayed to Boulder, the recalculated (via Eq. 1.3) prob-

ability for E is

Pr(E|Cambridge and Lampertheim evidence) = 0.5002

The cab driver’s report is strong evidence for Elvis’ presence in Cambridge, but although

the likelihood function very strongly favors “Elvis is here,” the prior is just as heavily

weighted in favor of “Elvis is not here,” so the posterior gives just about even odds.

Let’s see what’s happening in Portland. There’s a fellow with sideburns at the New

Saigon restaurant on West Burnside, although that’s not saying much, since there’s

plenty of facial hair in Portland. Somebody checked Powell’s Bookstore, just up Burn-

side at 10th (or is it 11th?), but there’s nobody in a gold sequin suit wandering the

aisles there; perhaps they didn’t search carefully enough, it’s a big place. The big news

from Portland is a talking velvet painting of the King at the 24 Hour Church of Elvis.

Apparently this work of art spontaneously spouts such words of wisdom as “Lemme

be your teddy bear,” “I dated your big sister,” and “You ain’t nothing but a hound

dog.” Elvis himself hasn’t been sighted there, but a mysteriously talking velvet painting

is certainly strong evidence that he is in the vicinity. The likelihood function for the

AN INTERCONTINENTAL BELIEF NETWORK 11

talking painting alone is

Pr(talking painting|P) = 0.5

Pr(talking painting|¬P) = 0.0001

with the very hefty likelihood ratio 0.5/0.0001 = 5000. The likelihood functions for the

other observations are

Pr(sideburns at New Saigon|P) = 0.33

Pr(sideburns at New Saigon|¬P) = 0.25

and

Pr(no sequins at Powell’s|P) = 0.90

Pr(no sequins at Powell’s|¬P) = 0.99

which have likelihood ratios close to 1; these observations are not very informative. The

combined likelihood is

Pr(Portland evidence|P) = 0.5 · 0.33 · 0.90 = 0.1485

Pr(Portland evidence|¬P) = 0.0001 · 0.25 · 0.99 = 2.475 · 10−5

which, combined with the prior for P and normalized, yields

Pr(P |Portland evidence) =
0.1485 · 0.01

2.475 · 10−5 · 0.99 + 0.1485 · 0.01
= 0.9838

So, ignoring evidence from other cities, we have a strong degree of belief that Elvis is in

Portland. This is due in part to the prior, which gives more weight to “Elvis is in town”

than do the priors for other cities, but it is mainly due to the talking velvet painting.

The Portland belief network sends an informational message to Boulder summariz-

ing the Portland evidence. Combining the evidence from Portland with that of Lam-

pertheim and Cambridge, we find

Pr(E|Cambridge, Lampertheim, and Portland reports) = 0.4987 (1.4)

AN INTERCONTINENTAL BELIEF NETWORK 12

which is actually a little bit less than before, but that shouldn’t surprise us. Since Elvis

can only be in one place, the strong evidence from Portland conflicts with the slightly

weaker evidence from Cambridge.

While all of this is going on, the riso host in Istanbul becomes unreachable — the

machine has crashed or there is a network problem. If some evidence is now observed

in Istanbul, we won’t find out about it until the connection is reestablished, so a con-

servative policy is to assume there is no evidence there. So we substitute the prior of

I, which was requested by E when the connection to Istanbul was first established,

for any informational message from Istanbul. This is a particular case of the general

communications policy outlined in Appendix B.

There is a new development in Cambridge — it turns out the evidence was entered

incorrectly. The cab driver didn’t say she saw Elvis, it was the friend of the friend of the

cab driver who said it. In the Cambridge belief network, the “cab driver says she saw

Elvis” evidence is erased, and “friend of a friend says cab driver says she saw Elvis” is

entered. This triggers a reassessment of E back in Boulder — Cambridge tells Boulder

that the previous message is now invalid (because evidence in Cambridge changed), and

Boulder requests a new message. The evidence in Cambridge is at the bottom of the

heap — information bubbles up to C from the friend’s friend’s report, using the rules

described in §5.3. The probability for “Elvis is in Cambridge” is revised,

Pr(C|friend’s friend’s report) = 0.001878 (1.5)

which is greater than the prior probability (0.001) for C, but not by much. Back in

Boulder, E receives a message from C which incorporates the revised evidence. The

revised posterior for E is

Pr(E|Cambridge, Lampertheim, and Portland reports) = 0.9798 (1.6)

Thus we now have a strong belief that Elvis is afoot somewhere in the world, and

examining the probabilities for each location, we see that Cambridge and Lampertheim

have very low probabilities, while Portland has a high probability; it appears that Elvis

is in Portland.

AN INTERCONTINENTAL BELIEF NETWORK 13

1.4 Comments on the “Where is Elvis?” problem

The trivial problem which we have studied in this chapter illustrates some important

points about belief networks. Among the useful properties of belief networks, described

at greater length in §§2.7–2.8, is the capability to fuse or merge together different sources

of information. Each source can be constructed independently, and the laws of probabil-

ity prescribe the algorithm for combining the sources. In the Elvis belief network, each

city can be considered a source, and even within the models for each city, each observa-

tion can be considered separately, and again the laws of probability tell how evidence

from different observations should be combined. At the level of a single proposition,

top-down (prior) information is combined with bottom-up (likelihood) information; the

posterior is computed by combining the prior and likelihood by pointwise multiplica-

tion. Although the posterior probabilities which are computed will change when some

observation models are added to the belief network or removed from it, the models for

the existing or remaining observations need not be modified. Thus the belief network

accomodates the combination or fusion of information on at least three different levels

— between networks, between nodes in a single network, and within a single node.

The reader will note that the Elvis belief network required a substantial investment

of time and thought to construct. A belief network is a quantitative representation of

relations between propositions, and so it is a statement of knowledge about the problem

domain. The ability of a belief network to make interesting computations (§2.7) is

limited by the quality of the knowledge by which the belief network was constructed; a

belief network computation essentially reexpresses or rerepresents the information which

is built into the network. A belief network cannot turn straw into gold, but, happily, it

can turn ingots into coins, foil, bracelets, and so on. Lest the reader become discouraged

by the effort required to build a belief network, it is possible to identify structures and

probability models for several common classes of problems, which should greatly speed

the development of new belief networks. Some of these common models are described

in Chapters 8 and 9, and especially Chapter 6.

AN INTERCONTINENTAL BELIEF NETWORK 14

To clarify an expression used repeatedly in §1.3, a message from one node A to

another B contains the information from nodes connected to A, but the evidence is not

represented explicitly. The information is present in a digested form, and expressed as

a probability distribution or likelihood function. Thus it is generally not possible to

reconstruct the evidence from messages, because there are usually many arrangements

of the evidence which yield the same messages. From the recipient’s point of view, the

distilled information in the message is more useful than the raw evidence, because the

recipient can ignore the structure of the belief network attached to the sender once the

message is received.

On a philosophical note, one might wonder how to interpret the probabilities com-

puted in §1.3. If we compute Pr(E) = 1, does that mean that Elvis is truly here among

us? No, a probability of 1 means that we are completely certain of the proposition, not

that the proposition is true, and probability 0 means we are completely certain of the

negation of the proposition, not that the proposition is false. In Chapter 2 probability

is constructed as an extension of classical logic, and for better or worse, probability in-

herits the interpretational baggage of logic. Logic has a notorious “garbage in, garbage

out” feature: the truth of deductions is no different than the premises upon which they

are based. “If today is Tuesday, this must be Belgium” and “This is not Belgium” to-

gether imply “Today is not Tuesday,” which is correct but not necessarily true. In the

exactly the same way, probability calculations can be correct and not necessarily true.

The premises upon which a belief network inference rests are the assignments of con-

ditional and prior probabilities in the belief network; given inappropriate assignments,

we can compute as much garbage as we want. The essential problem is the lack of a

necessary connection between beliefs and the world “out there,” which is discussed in

a little more detail in §3.3.

1.5 What’s to come in the dissertation

We have begun our journey through the world of belief networks with an enjoyable

diversion through a simple belief network example. Several questions are raised by the

AN INTERCONTINENTAL BELIEF NETWORK 15

example — What does a belief network represent? How is its structure determined?

Where do the numbers come from? How do we use a belief network to answer our

queries? — which will be resolved in the chapters to follow. In broad outline, this

dissertation will put a particular theory of probability on a solid foundation and then

show how belief networks based on that theory can be used to solve practical problems.

It is time to resume the main development — let us see where the remainder of the

dissertation is going.

In Chapter 2, a derivation of probability from logic is sketched, and this provides the

foundation for everything else in the dissertation. Useful operations such as prediction

and diagnosis are interpreted in probabilistic terms, and some of the ways in which

belief networks merge different sources of information are described.

In Chapter 3, a brief account of the history of the idea of probability is sketched.

There is a brief discussion of the problem of induction.

In Chapter 4, the riso belief network system is described. riso was used in this

chapter to implement the Elvis belief network and carry out the computations required.

Less trivial examples of distributed belief networks are given in §§ 4.4, 8.1, and 9.1.

In Chapter 5, the inference algorithm which is used by riso is described in detail.

This algorithm, called the polytree algorithm, is well-suited to handling the various kinds

of distributions which arise in engineering problems, although there are difficulties with

belief networks which contain more than one path from some node to another. The

polytree algorithm has been around for a number of years, but it is usually assumed

that the distributions involved all belong to the same class. I have extended the polytree

algorithm to handling different kinds of distributions, to better accomodate the demands

of engineering models. This heterogeneous polytree algorithm, for all its limitations, is

the major technical result of this dissertation.

In Chapter 6, some commonly-occurring belief network structures are described.

These structures are models for sensors, and it is foreseen that such “off-the-shelf”

models will be useful in engineering applications.

In Chapter 7, the problem of selecting a electricity rate schedule is solved by modeling

AN INTERCONTINENTAL BELIEF NETWORK 16

energy use with a belief network and computing expected demand and energy costs.

The demand calculation requires that the distribution of the maximum of a number of

variables be computed. The electricity rates problem is the most substantial application

of a belief network in this dissertation.

In Chapter 8, two additional belief network applications are described. One is a

model of a heating coil and the other is a model of a mixing box. I believe these models

are typical of the kinds of engineering problems for which belief networks are well-suited.

In Chapter 9, a class of models for inferring model parameters is presented. I believe

that such models will be useful for tuning parameters in situ, and so these models are

an excellent topic for future investigation. This chapter, which is the final chapter of

the dissertation, also contains some summary remarks.

There are several appendices which contain details of calculations or programming

which would only burden the main development. In particular, Appendix C contains

many special cases of the general inference rules described in Chapter 5.

Let us start over with the fundamentals: we need a means of reasoning correctly

in an uncertain world. Chapter 2 opens with a search for the principles of uncertain

reasoning.

Chapter 2

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS

In the previous chapter, probability was accepted without discussion as the foun-

dation on which the intercontinental belief network was constructed. Let us step back

for a moment and consider the reasons for choosing probability instead of some other

formalism for reasoning in an uncertain world. Uncertainty arises in many ways; in

engineering problems we may distinguish uncertainty in experimental data (including

noise and missing data), in model parameters, and in hypotheses, and still other forms

of uncertainty may arise in other fields. It might be supposed that there are several

reasoning formalisms, each of which is best-suited to handle a different kind of uncer-

tainty, but it turns out there is no need to enumerate or distinguish different forms of

uncertainty, because all forms can be handled by one formalism, namely probability,

in a uniform way. It is not difficult to show that, given some reasonable axioms, the

generalization of ordinary logic to degrees of belief other than 0 and 1 yields a system

which is isomorphic to the usual formulation of probability. The development is not

described in detail, but the essentials sketched in §2.1 below and further references are

given.

As explained further in this chapter, probability is the basis for the implementation

of the automated reasoning system described in this dissertation. The circles and ar-

rows, so prominent in diagrams of belief networks such as Figures 2.1 and 2.2, are merely

convenient representations of probabilistic concepts; the object of study is always the

underlying probability model. However, as an aid to thought, the role of a graphical

representation is very substantial, since the graph of a belief network is a quantitative

representation of the independence properties of the probability model. The indepen-

dence of two variables in a probability model can be determined by studying the graph

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 18

of the corresponding belief network, without referring to numerical values at all; the

graphical criterion for independence, called d-separation, is described in §2.6.1.

In the remainder of this chapter, the customary metaphysical foundation of classical

physics is assumed without question — this is mostly deterministic materialism, the

dualism of res cogitans and res extensa, and the correspondence theory of truth. Like

all such assumptions, these may be called into question in various ways; in particular,

modern physics, in the shape of the quantum and relativity theories and the study of

nonlinear dynamical systems, seems to undermine the classical foundations, which in

the West have become enshrined as simple common sense. Troublesome questions are

relegated to a brief discussion in Chapter 3, and for the remainder of the dissertation

conventional views will be assumed.

2.1 Generalizing logic into probability

According to the interpretation of probability proposed by J.M. Keynes, R.T. Cox, and

E.T. Jaynes, the domain of probability is the same as ordinary propositional logic.1

Probability and propositional logic both operate on variables called “statements” or

“propositions,” which are generally interpreted as statements of fact. Each proposition

A is associated with a function which maps A into the set {0, 1}, with 0 conventionally

identified with certainty of the negation of A and 1 identified with certainty of A. Simple

propositions are the primitives of probability and propositional logic, since complex

propositions are formed by applying logic operations to two or more simple propositions.

It can be shown [51, App. A] that all operations on propositions may be reduced to just

a few: it turns out that all logic operations may be expressed in terms of conjunction and

negation alone. Thus the task is to obtain probabilistic generalizations of conjunction

and negation; given this, the probability of any complex proposition can be obtained

(in principle, at least) by reducing it to simple propositions and applying the rules for

1 One is tempted to call it the “logical” interpretation of probability, except that name has already

been taken by a rather different theory devised by R. Carnap.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 19

combining simple propositions by conjunction and negation.

This dissertation faithfully follows the exposition of Jaynes [41], who did much to

popularize the ‘probability as extended logic’ theory. Jaynes’ approach is based on

the work of R.T. Cox [18, 19, 20], who in turn was inspired by J.M. Keynes [45].

The work of Jaynes cited here is highly recommended to the reader, as it contains a

thorough discussion of fundamentals, interesting digressions on several topics, and a

lengthy annotated bibliography. The numerous screeds directed against R.A. Fisher,

the very prophet of frequentism, are the only drawback of Jaynes’ work; at least his

rants make for good entertainment.

In what follows, propositions will be written in the form A|B, which indicates a

proposition A given that proposition B holds. Degrees of belief generally depend not

only on a particular proposition A in question, but also on the sum-total of background

information before which A is asserted. This implied background, which consists of

all information pertaining to A, is sometimes denoted “&c.” (that is, “et cetera”).

A probability Pr(A|B) is called the conditional probability of A given B, and it is

more carefully written as Pr(A|B, &c.). An “unconditional” probability Pr(A) is one

which is conditioned only on the implied background, and it is more carefully written

as Pr(A|&c.). This illustrates a fundamental tenet of our approach, that all degrees of

belief are conditional on something, which is restated more precisely as Desideratum

3(b) below.

The probability Pr(A|B, &c.) is to be interpreted as the rational degree of belief

(d.o.b.) of A given B and the background information. The d.o.b. of A is derived by

fixed rules from d.o.b.’s of B and the background; in this sense the d.o.b. is “objective”

and not personal — anyone, indeed a machine, starting from the same information

will compute the same d.o.b. of A. Degree of belief suggests, perhaps too strongly,

a personal, subjective element in the calculations; Jaynes wisely phrases the search

for the principles of reasoning in terms of the operating principles of a robot, which

presumably introduces no personal element into the calculations. However, the d.o.b.’s

of elementary propositions, such as Pr(B|&c.) in the present example, are not computed

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 20

by the laws of probability and enter the calculations through some extra-probabilistic

considerations; see §2.3. The conclusion of a probability calculation may be interpreted

as, “If you hold the stated d.o.b.’s for the elementary propositions in this problem,

and you accept the desiderata listed below, then your rational d.o.b. of the proposition

in question has the computed value.” Thus the laws of probability can be seen as a

mechanism for expressing the hidden implications of one’s assumptions, embodied in

d.o.b.’s and desiderata; one can hardly hope for more than this.

Jaynes begins the search for a generalization of propositional logic with the follow-

ing set of desired characteristics of the resulting system, which he calls “desiderata.”

These desiderata are sufficient to ensure that there is essentially only one extension of

propositional logic satisfying these criteria.

1. Degrees of belief are represented by real numbers.

2. The reasoning system should have qualitative correspondence with common sense

and propositional logic:

2(a). The degree of belief of a conjunction (A ∧ B)|C is a function of the degrees

of belief of A|(B ∧ C) and of B|C, or a function of the degrees of belief of

B|(A ∧ C) and of A|C.

2(b). The degree of belief of a negation ¬A|B is a function of the degree of belief

of A|B alone.

2(c). Greater degree of belief is represented by a greater number.

2(d). The rules governing degree of belief must hold under all numerical assign-

ments of the d.o.b.’s of the elementary propositions of the problem.

3. Consistency:

3(a). If a conclusion can be reasoned out in more than one way, all ways must lead

to the same result.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 21

3(b). The reasoning system takes into account all information relevant to a ques-

tion.

3(c). Equivalent states of knowledge are represented by equivalent degrees of belief.

This list of desiderata differs slightly from that given by Jaynes in that a few items

which he did not state directly are included here. The importance of Desideratum 2(d)

has been lately emphasized [77, 38], since counterexamples to the results cited below can

be constructed if 2(d), which is sometimes termed a “density” assumption, is denied.

A consideration of Desideratum 2(a) leads us to conclude

F (F (x, y), z) = F (x, F (y, z)) (2.1)

where F is the degree of belief function mentioned in 2(a), and x, y, and z are the degrees

of belief of some propositions A|(B∧C), B|C, and C, respectively; F (x, y) is the degree

of belief of the compound proposition (A∧B)|C, likewise F (y, z) is the d.o.b. of B ∧C,

and both sides of Eq. 2.1 are equal to the d.o.b. of A ∧ B ∧ C. A solution of Eq. 2.1,

which is called the “associativity equation” by Jaynes, may be found easily [18, 41]

by assuming that F is twice differentiable, and in a more roundabout way [1] by not

assuming differentiability. It transpires that the associativity equation is satisfied by

F (x, y) = w−1(w(x)w(y)) (2.2)

where w is any positive monotonic function of a real variable. A particular choice of

w(x) = x yields the law of conjunction which we find most familiar; a different choice

would yield a law with a different form, but the same content.

Likewise, a consideration of Desideratum 2(b) leads to

S(S(x)) = x (2.3)

where S is the degree of belief function mentioned in 2(b). Imposing the conventions

that S(0) = 1 and 0 ≤ x ≤ 1, we find

S(x) = (1− xm)1/m (2.4)

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 22

where m is a positive real number. Again, the particular choice m = 1 yields the law

of negation which seems familiar to us, but the choice is only a matter of taste and

convenience.

To summarize, Desiderata 2(a) and 2(b) (with other desiderata taken into account

as necessary) yield the conjunction and negation formulas

Pr(A ∧B|C, &c.) = Pr(A|B ∧ C, &c.) Pr(B|C, &c.)

= Pr(B|A ∧ C, &c.) Pr(A|C, &c.) (2.5)

Pr(¬A|&c.) = 1− Pr(A|&c.) (2.6)

with Pr denoting the degree of belief of a proposition. Using these two rules and the

conjunctive normal form [51] of a complex proposition, we can express the degree of

belief of any complex proposition in terms of products and differences of degrees of

belief of simple propositions.2

2.1.1 A useful elementary result: the disjunction rule

A very useful result is to compute the probability of a disjunction. Since A ∨ B =

¬(¬A ∧ ¬B), we have

Pr(A ∨B) = 1− Pr(¬A ∧ ¬B) = 1− Pr(¬A|¬B) Pr(¬B)

= 1− (1− Pr(A|¬B)) Pr(¬B)

At this point, note Pr(A|B) Pr(B) = Pr(A ∧ B) = Pr(B|A) Pr(A) for any two propo-

sitions A and B, so we have

Pr(A ∨B) = 1− Pr(¬B) + Pr(¬B|A) Pr(A)

= 1− (1− Pr(B)) + (1− Pr(B|A)) Pr(A)

= Pr(A) + Pr(B)− Pr(B|A) Pr(A) (2.7)

2 “It is often said, and rightly, that reasons should not be counted, but weighed; however, no one has

yet provided us with the scales on which to weigh the cogency of reasons,” as Leibniz remarked in

1697. Would he accept Cox’s rules as the appropriate scales?

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 23

In the special case that A and B are mutually exclusive, so Pr(B|A) = Pr(A|B) = 0,

we have

Pr(A ∨B) = Pr(A) + Pr(B) (2.8)

It is hoped that the derivation of Pr(A ∨ B) illustrates a useful result based on the

conjunction and negation rules; in the interest of brevity, further demonstrations will

be much condensed or omitted entirely.

2.2 Properties of joint, conditional, and marginal densities

In applications, the propositions of interest are often of the form “X ∈ A” where X is a

variable which represents a numerical quantity in the problem domain, and A is a set of

the values which X can take on. It is often convenient to work with probability density

functions instead of the probability function itself, Pr(“X ∈ A”). A probability density

function pX is the Radon-Nikodym derivative (w.r.t. the underlying measure, usually

the Lebesgue measure on the reals or the uniform discrete measure on a subset of the

integers) of the corresponding probability function Pr(“X ∈ A”), so by definition it has

the property

Pr(“X ∈ A”) =
∫

A
pX(a) da (2.9)

interpreting the integration as a summation, if appropriate. Probability densities inherit

the conjunction rule from probability functions: writing the joint density of X and Y

as pXY , we have

pXY (a, b) = pX|Y (a, b) pY (b) = pY |X(b, a) pX(a) (2.10)

where the conditional density pX|Y is defined as the Radon-Nikodym derivative of the

conditional measure

lim
∆b→0

Pr(“X ∈ A”|“Y ∈ B(b,∆b)”) (2.11)

(denoting the open ball centered on b with radius ∆b as B(b, ∆b)), and likewise for

pY |X . Densities also have the extremely useful marginalization property,

pX(a) =
∫

pXY (a, b) db, pY (b) =
∫

pXY (a, b) da (2.12)

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 24

again interpreting the integration as a summation, if appropriate. In the equations in

this section, X and Y may be one-dimensional or many-dimensional. The conjunction

and marginalization rules are not difficult to prove, but require some care in the handling

of conditional densities; see Ref. [62] for an elementary treatment. These properties of

probability densities will be used very extensively in Chapter 5.

2.3 Assigning numerical values to probability distributions

We now have rules (Eqs. 2.5 and 2.6) for combining degrees of belief. This brings us

to the question of how numerical values are assigned to degrees of belief of elementary

propositions. Strictly speaking, this is an extra-probabilistic problem; when we invoke

the machinery of probability in a problem, it is assumed that numerical values are al-

ready known for the elementary propositions in question. As to problem of determining

some numbers so that the calculations can get started, formal methods are known only

for the expression of complete ignorance, but so far only heuristics are available for the

much more interesting and complex problem of expressing partial knowledge. Let us

consider the simpler problem of ignorance first.

2.3.1 Numerical probabilities via exchangeable labels

Let us suppose that we are interested in a variable which can take on a finite number

of values, and these values are identified by labels which can be exchanged without

changing our degrees of belief; this is the simplest case for which numerical probabilities

can be derived. As an example, we might consider the probability of head or tail on

the toss of a coin; it is customary to assume it doesn’t matter which side is called head

and which is called tail, so these labels are exchangeable. Likewise, with the throw

of a die, it is usually assumed that the numbering of the sides is irrelevant, so that

labels 1 through 6 are exchangeable. Exchangeability implies equal probability, through

Desideratum 3(c) above; Jaynes [41] works through the details. Thus the probability

of each proposition associated with an exchangeable label is just 1/N , where N is the

total number of labels, since all the probabilities are equal and sum to unity.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 25

This argument is easily generalized to a common case involving non-exchangeable

labels. Suppose the labels are non-exchangeable, but can be decomposed into more ele-

mentary labels which are exchangeable. For example, “die shows 1 or a prime number”

and “die shows a composite number” are not exchangeable, but each may be decom-

posed into statements about the labels 1 through 6, and those labels are exchangeable.

Now

die shows 1 or a prime iff die shows 1 or 2 or 3 or 5

die shows a composite iff die shows 4 or 6

Since only one label can appear at a time, the simple propositions “die shows 1,” “die

shows 2,” etc. are mutually exclusive, and the special disjunction rule, Eq. 2.8, yields

Pr(die shows 1 or a prime) =
1
6

+
1
6

+
1
6

+
1
6

=
2
3

(2.13)

Pr(die shows a composite) =
1
6

+
1
6

=
1
3

(2.14)

A moment’s thought shows that

The probability of an event is the ratio of the number of cases favorable to it, to
the number of all cases possible when nothing leads us to expect that any one of
these cases should occur more than any other, which renders them, for us, equally
possible.

as Laplace put it [23]; this is now called the classical definition of probability. Un-

fortunately, this definition has rather limited applicability — it works very well for

discrete variables with exchangeable labels, and is not very useful for anything else. In

particular, one runs into trouble with the definition of “exchangeable” in the case of

a continuous variable, because the parametrization of the problem makes a difference

in the results; it makes a difference whether one works with distance per time or time

per distance, for example. See Ref. [12] for a discussion of the difficulties involved, and

some indications of a solution.

It is important to note that probabilities calculated above are not based on the

physical properties of the coin or die, but on the state of our knowledge about the coin

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 26

or die. Two labels are exchangeable if nothing tells us they are not exchangeable; thus

exchangeability is an expression of ignorance. Ignorance is supplanted at any moment

by additional information, which will lead us to compute some other probabilities. A

detailed consideration of the mass removed by drilling dots into the die may lead us

to revise slightly the probability of “die shows 1 or a prime number”, but until that

information is available, our degree of belief stands at 2/3.

2.3.2 Heuristics for expression of partial knowledge

The extremely important task of expressing or encoding partial knowledge in probability

distributions is, unfortunately, only poorly understood. See Refs. [42, Ch. 3] and [13,

Ch. 5] for an introduction to the art of constructing belief network models. Several

ways in which partial knowledge is encoded in the structure of a belief network are

described in this section.

Precise relation of child to parents. Suppose that we know a variable Y is a precise

(i.e., noiseless) function F of some parents X = (X1, X2, X3, . . .). To encode this in a

belief network, we make Y the child of parents X, with a conditional distribution which

is a delta function:

pY |X(y, x1, x2, x3, . . .) = δ(y − F (x1, x2, x3, . . .)) (2.15)

Formally, there is no problem with a delta function in the computation of π- and λ-

messages described in Chapter 5, since the presence of the delta only simplifies some of

the integrations.

Noisy relation of child to parents. With Y and X = (X1, X2, X3, . . .) as before, suppose

the relation F is distorted by noise. We can model a relation with additive noise ε as

pY |X(y, x1, x2, x3, . . .) = pε(y − F (x1, x2, x3, . . .)) (2.16)

with pε usually taken as a Gaussian distribution with mean zero, and we can model a

relation with multiplicative noise η as

pY |X(y, x1, x2, x3, . . .) = pη(y/F (x1, x2, x3, . . .)) (2.17)

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 27

with pη usually taken as a lognormal distribution, such that log η has mean zero. Other

noise distributions are certainly possible.

Child is a noisy observation of parent. A child X̂ which represents a observation or

measurement of a parent X is a special case of the preceding example. As before, one

must decide what kind of noise affects the measurement. For additive noise, if the noise

distribution is pε, the distribution of the child given the parent is pε(X̂ − X). In the

case of additive Gaussian noise, it is convenient to represent the child’s distribution as

a conditional Gaussian with multiplier 1, offset 0, and conditional variance equal to the

variance of pε.

Child is a classification of parents. Sometimes diagnostic models are constructed with

observable variables as the inputs and a discrete hypothesis variable as the output. Mod-

els of this type include generalized linear models [54] and squashing neural networks [71].

The output of classification models can be interpreted as a probability distribution over

the possible values of the category hypothesis. A classification model interpreted as a

conditional distribution appears in the belief network monitor2 described in §4.4.

Conditional derived from a joint distribution. It is sometimes convenient to construct

a model of a relation between two variables first as a joint distribution, and then derive

a conditional distribution from that, especially in problems in which the conditional

variance of the child variable may change depending on the parent’s value, a condition

called “heteroskedasticity.” Deriving a conditional from a joint distribution is especially

easy in problems based on measured empirical data, as in the model of temperature and

relative humidity described in §6.7, in which the joint distribution was constructed as a

mixture of Gaussians, and the conditional of relative humidity given temperature was

derived using the results described in Appendix E.

The methods of model construction listed in this section are important ways of in-

troducing knowledge about the problem structure into the belief network. There is a

another broad aspect of knowledge representation, which concerns setting parameters

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 28

to represent prior information within a predetermined structure. For example, to say

that the relation of a child to its parents is given by a neural network, is to specify a

certain structure for the relation, and that specification rules out many alternatives.

However, one can go farther, and say that the output of the neural network should

be similar to another neural network, which implies the parameters of the new neural

net should be similar to those of the old one. Quantifying the similarity between two

sets of parameters is a little subtle, and it is fair to say that definitive solutions have

not yet been found. However, the broad framework of Bayesian modeling, which takes

prior information into account when finding model parameters, seems appropriate for

this problem. Some aspects of this important and interesting topic are discussed in

Refs. [53] and [56].

2.4 Shortcomings of probability

There are at least two important classes of problems for which probability alone is not

enough. One such kind of problem concerns making decisions when there is more than

one agent making decisions. The results of classical utility theory (see Refs. [59] and [16]

for an introduction to this vast subject) apply only to a single decision maker — the

presence of others complicates the situation greatly. Some progress on the topic of game

theory (as multiple agent decision theory is called; see Ref. [82] for an introduction to this

equally vast subject) has been made, but the easy result of single-agent decision theory,

namely the best action is that which maximizes expected gain, no longer applies. For

the purposes of this dissertation, we shall assume that decisions are made by a single

agent, whose state of knowledge is represented by a probability distribution; this is

enough to carry out predictions and diagnoses.

The other kind of problem not covered by probability alone concerns the represen-

tation and, especially, the inference of causation. It is well known that probability

can represent association and correlation but not causation; and it is conventional to

therefore leave causation aside without further discussion. However, causation is an

extremely useful concept (ignoring physicists who tell us there is no such thing). A

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 29

promising new formal theory of causation has been proposed by J. Pearl [64].

Pearl’s theory of causality is focused on the need for a formal algebra of causality.

Although causation was banished from statistics by Karl Pearson early in the 20th

century, there is still a need to reason carefully about interventions such as holding

a variable fixed or randomizing an experiment with respect to a variable, but under

the influence of Pearson such considerations are almost always carried out informally.

Pearl uses a graphical theory to reason about causation, similar to the probability

theory of belief networks but enriched with additional concepts. It is certainly true that

probability alone is not sufficient to discuss causation properly, but instead of ignoring

the topic altogether, we need to devise the formal tools which will allow us to reason

correctly — this is Pearl’s motivation.

In engineering applications, automatically inferring cause and effect from raw data

would be very useful, but, sadly, there is not room in the present work to explore this

extremely interesting topic.

2.5 Conventions of notation

Before moving on to graphical probability models, let us take a moment to review the

notations which were introduced in this chapter, and list others that are used in the

remainder of this dissertation.

1. A variable is a place-holder in an equation or other relation. That is, a variable is

defined only by its relations with other variables — this is the way variables work

in logic and mathematics.

2. There is no distinction between a variable and an instance of that variable, as

no distinction is drawn in ordinary scientific and mathematical problems. For

example, if I say “T is temperature,” then the proposition “T > 100” is well-

formed.

3. “Pr(A|B, &c.)” is read as “probability of A given B and implied background,”

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 30

and often abbreviated as “Pr(A|B).”

4. We write pX for the probability density of the probability function Pr(“X ∈ S”).

5. The notation X |Y , pronounced “X given Y ,” indicates that any distribution

function or probability density associated with the variable X will be a function

of the variable Y .

6. “X ∼ N(µ, σ2)” is a shorthand for

pX(u) = 1/(σ
√

2π) exp(−(1/2)(u− µ)2/σ2)

“X |Y ∼ N(F (Y), σ2)” is a shorthand for

pX|Y (u, v) = 1/(σ
√

2π) exp(−(1/2)(u− F (v))2/σ2)

where F is some function.

7. “g(X;µ, σ)” is a shorthand for

g : X, µ, σ 7→ 1/(σ
√

2π) exp(−(1/2)(X − µ)2/σ2)

That is, g is the density function of a variable X such that X ∼ N(µ, σ2).

8. pX , pY , pX|Y , pXY are all functions; pX(0), pY (50), pX|Y (10, 28), pX,Y (17, 45) are

numbers.

I have tried to use a notation which is as general and unambiguous as possible; the

reader may judge whether I have succeeded.

2.6 Elements of graphical probability models

Let us establish some background material on the graphical properties of belief networks.

Refs. [63] and [13] contain comprehensive expositions on these properties. A belief

network, for our present purposes, is a collection of conditional probability functions

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 31

A B

C

D
E

Figure 2.1: An illustration of graphical model terminology. The probability model

represented by this figure is pABCDE = pD|C pE|C pC|AB pA pB. Nodes A and B have

no parents; the parents of C are A and B; the parent of D is C; and the parent of E

is C. C is the child of A and B; D and E are the children of C; and D and E have

no children. Note that the assignment of arrows leading into each node in the graph

corresponds exactly to the list of variables on the right-hand side of each conditional

probability in the model. Parents are conventionally placed above children on the page,

but the direction of the arrows is what matters.

associated with a directed graph. (Sometimes the definition of belief network is extended

to include undirected graphs, or graphs with both directed and undirected edges, but

these extensions aren’t needed for this dissertation.) Each variable X in the probability

model is associated with a node of the same name in the graph. The parents of a

variable X are the variables that appear on the right-hand side of the vertical bar in

a conditional probability. The graph has an arrow (i.e., a directed edge) leading from

each parent node into X. If U is a parent of X, then we say that X is a child of U .

Figure 2.1 illustrates the terms introduced in this paragraph.

A node is said to be an evidence node if the corresponding variable in the probability

model has a known value. The set of all evidence nodes is conventionally denoted e.

Any node can be an evidence node, not just those corresponding to sensor observations

or other kinds of measurements.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 32

2.6.1 A graphical criterion for independence

Two variables X and Y are said to be independent if their joint distribution is equal to

the product of their marginal distributions,

pXY (a, b) = pX(a) pY (b) (2.18)

Whether two variables in a belief network are independent (a mathematical notion)

can be determined by studying only the graph of the belief network. If two nodes

in the graph have a property called “d-separation,” then the corresponding variables

are independent. However, if the two nodes are not d-separated, they might or might

not be dependent. It turns out that it is more important to establish independence,

since if independence is assessed incorrectly the calculations of posterior probabilities

will be incorrect. On the other hand, incorrectly assuming dependence leads only to

unnecessary computations.

Before stating a graphical criterion for independence, we need a few more technical

terms. A directed path from some node A to another, B, is a sequence of arrows such

that A is at the tail of the first arrow, the head of each arrow meets the tail of the one

following, and B is at the head of the last arrow. An undirected path between A and

B is a sequence of edges (i.e., ignoring the direction of arrows) such that A is at one

end of the first edge, each succeeding edge is joined to the one previous, and B is at

one end of the last edge. B is a descendent of A if there is a directed path from A to

B, in which case A is an ancestor of B.

Consider an undirected path between A and B. A node X (other than A or B) in

the path is called a converging node if its predecessor and successor are both parents

of X. It is called a diverging node if its predecessor and successor are both children of

X. Finally, it is called a linear node if the predecessor is a parent and the successor is

a child, or vice versa. Figure 2.2 shows a belief network and some paths within it, and

classifies the nodes in those paths.

We can now state, in graphical terms, a criterion for the independence of two vari-

ables. See especially Ref. [14] for a comprehensible treatment of this topic.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 33

(The d-separation criterion.) Two nodes A and B are d-connected w.r.t. evidence
e if there is an undirected path between them such that every converging node is
in e or has a descendent in e, and all diverging and linear nodes are not in e. If A
and B are not d-connected, they are d-separated. If they are d-separated, A and
B are independent w.r.t. e.

The d-separation criterion is illustrated in Figure 2.2. It is not trivial to prove that the

graphical d-separation criterion implies the mathematical independence property; see

Ref. [63] for a proof.

If X ∈ e is d-connected to A through one of the parents of A, X is said to be

“upstream” evidence w.r.t. A; if X is d-connected through one of the children of A, X

is said to be “downstream” evidence w.r.t. A.

Note that adding a converging node X to the evidence e or adding a descendent of

X to e makes the ancestors of X d-connected. On the other hand, adding a diverging

node Y to e makes the descendents of Y d-separated (if there are no paths connecting

those descendents except through Y), and adding a linear node Z to e makes the

ancestors of Z d-separated from the descendents of Z (again assuming there are no

paths except through Z). Thus whether two variables A and B are independent is not

a static property of the probability model, but it changes with the evidence e. riso

uses d-separation to determine which quantities (in particular, posterior distributions)

need to be recomputed when some variable X is added to e or removed from e. Every

calculation associated with a variable which is d-connected to X becomes stale, and

must be recomputed, taking the change in the evidence into account. According to

the general policy of laziness in riso, stale calculations are erased, but not recomputed

until there is a request for those calculations; the pertinent details are described in

Appendix B.

2.7 Probabilistic interpretation of prediction and diagnosis

Part of the power of a probabilistic approach to modeling is that several important

and interesting operations can be defined as the calculation of probability distributions.

Thus one can define a single probabilistic model and examine it in different ways to

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 34

B

C D

E

F

G

H

I

A

Figure 2.2: Two illustrations of the d-separation criterion. Evidence nodes are shaded:

e = {A,G}. (i) The undirected path B → D → E → F ← H → I joins B and I.

F is converging; H is diverging; D and E are linear. B and I are d-connected by this

path, therefore they are not d-separated w.r.t. the evidence e. (ii) The undirected path

C ← A → D → E → F ← H joins C and H. F is converging; A is diverging; D and E

are linear. A is a diverging node which is in e, therefore this path does not d-connect

C and H; there are no other undirected paths between C and H, therefore C and H

are d-separated, therefore C and H are independent w.r.t. the evidence e.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 35

perform prediction and diagnosis, calculate value of information, and carry out function

inversion, revision of hypotheses, “what if?” reasoning, and rule out hypotheses; see

Ref. [42] for a lengthy discussion of belief network operations. In this section, these

operations will be defined and illustrated with some trivial examples, and references to

substantial examples elsewhere in this dissertation are given.

2.7.1 Revision of hypotheses

Suppose we have only one evidence variable X in a belief network. We dutifully compute

the posterior of an hypothesis variable H given X, pH|X . On the basis of the evidence

e = {X}, H has the distribution pH|X . When additional evidence Y is observed, our

beliefs about H become out-of-date. We should now base our belief about H on the

combined evidence e = {X, Y }. This is no problem: we simply compute the posterior

pH|X,Y . We can repeat this process as often as we want, sometimes adding variables

to e, sometimes taking them away. At each step, the newly-computed posterior pH|e

states our belief about H on the basis of the evidence e. The algorithm for computing

posterior distributions is described in detail in Chapter 5.

The revision of hypotheses with the increase or decrease of available evidence is a

fundamental operation on a belief network. In some cases, the arrival of new evidence

requires that all previous results be invalidated, while in others, partial results based

on previous evidence are not affected by new evidence. To be more precise, a result

is invalid if it is associated with a variable which is not d-separated (§2.6.1) from the

variable which is new evidence or which is evidence no longer. Whether or not a partial

result is invalid can be determined automatically by d-separation, so that every posterior

computed in the belief network correctly takes into account the current set of evidence

variables.

2.7.2 Prediction and “What if?” scenarios

Probability models are usually constructed with variables which are considered “causal”

or “exogenous” as the parents for other variables which are considered “effects” or

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 36

“endogeneous.” Let us name the parent variables generically as U , and the children

as X. The model is specified generically as pUX = pX|U pU ; there may be any number

of other variables in the model, but the essential point is that the causal variables are

upstream from the effects variables.

We understand prediction as the computation of a posterior for a downstream vari-

able given upstream evidence. If the belief network expresses a temporal structure, with

nodes for variables in the past and future, the evidence may include stated values for

past variables, and the posterior may be computed for future variables. The posterior

can also be computed for a past variable given observed values in the present, in which

case the posterior might be called a ‘retrodiction.’

The computation of an estimated yearly energy use could be computed by a belief

network with nodes for, say, hourly temperature, time of day, architectural parameters,

and other influential variables. A calculation using actual values yields an estimate of

actual energy use, but there’s nothing to stop us from modifying some of the parameters

and recomputing the posterior over annual energy use. Tinkering with the parameters

while constructing or calibrating a model is a time-honored practice, and it is supported

in belief network computations as the calculation of posterior distributions conditional

on the tinkered-with variables.

2.7.3 Diagnosis and ruling out hypotheses

For our purposes, we will define diagnosis as the computation of the posterior distri-

bution of a discrete variable given downstream evidence. In many applications, dis-

crete upstream variables will represent hypotheses about equipment status or mode of

operation, and downstream variables will represent observables such as temperatures,

pressures, electrical demand, etc. Models for such systems are typically specified with

the observables (say X) as children of the hypothesis variables (say H), and the goal is

to compute pH|X .

It is typically the case that the hypothesis variable H has several possible values,

which correspond to a set of mutually exclusive hypotheses, for example, normal oper-

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 37

ation of a chiller and several mutually exclusive failure modes. The posterior pH|X is

a list of numbers which tells the probability for each of the possible hypotheses; gener-

ally if the probability of one or more failure modes is large, we will need to take some

kind of action. Note that there is no separate “detection” calculation which precedes

the computation of the the probability of each kind of failure; the probability of one

or more failures of any kind is just
∑

k Pr(“failure type k”), so in order to calculate an

aggregated failure probability, it is necessary to carry out the whole calculation of pH|X ,

which obviates the need for detection.

It is worth noting in this context that the machinery developed in Chapter 5 is

devoted largely to automatically computing extensions to Bayes’ rule. For example, if

a model is specified as pHX = pX|H pH , we can obtain the posterior for the hypothesis

variable via Bayes’ rule,

pH|X(h, x) =
pX|H(x, h) pH(h)∑
h′ pX|H(x, h′) pH(h′)

(2.19)

Now suppose that our model contains three variables X,Y , and H, with pXY H =

pY |X pX|H pH . Suppose we’ve observed Y but not X. The appropriate inference rule is

now

pH|Y (h, y) =
pH(h)

∫
pY |X(y, x) pX|H(x, h) dx∑

h′ pH(h′)
∫

pY |X(y, x) pX|H(x, h′) dx
(2.20)

which is not too difficult to derive; but if the model is, say, pX1X2Y1Y2Y3H =

pY1Y2|X1
pX1|H pH|X2

pX2|Y2
, and we are asked to find the posterior of H given Y1, Y2,

and Y3, it’s not immediately obvious the inference rule should be

pH|Y1Y2Y3
(h, y1, y2, y3) =∫

pY1Y2|X1
(y1, y2, x1) pX1|H(x1, h) dx1 ·

∫
pH|X2

(h, x2) pX2|Y3
(x2, y3) dx2∑

h′
∫

pY1,Y2|X1
(y1, y2, x1) pX1|H(x1, h′) dx1 ·

∫
pH|X2

(h′, x2) pX2|Y3
(x2, y3) dx2

(2.21)

and, except to promote mental dexterity, it is not a very enlightening calculation; as with

breaking rocks, it is better to have a machine do it. Figure 2.3 shows belief networks

for the models to which this paragraph refers.

We may know, through a site inspection or by other means, that some hypotheses are

ruled out, that is, impossible. We can express this information with a prior pH which

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 38

Y1 Y2

H

X2

Y3

X1

H

X

X

Y

H

(ii) (iii)(i)

Figure 2.3: Belief networks to illustrate generalizations of Bayes’ rule. Evidence nodes

are shaded. (i) pH,X = pX|H pH . (ii) pH,X,Y = pY |X pX|H pH . (iii) pX1,X2,Y1,Y2,Y3,H =

pY1,Y2|X1
pX1|H pH|X2

pX2|Y2
.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 39

puts zero mass on the hypotheses which are impossible, and compute the posterior

as usual. The remaining hypotheses which are not ruled out will be assessed greater

probabilities, since
∑

h′ pH|e(h′) must still be 1. Furthermore, H may interact with other

hypothesis variables elsewhere in the system through observable variables, so a prior

pH which rules out some hypotheses will affect degrees of belief for other hypothesis

variables, as one expects. In a sense, ruling out hypotheses is a kind of “negative

evidence,” since it does not tell what the hypothesis is, only what it is not. The laws

of probability can handle this case with ease.

2.7.4 Function inversion

A special case of diagnosis which is arises in many engineering problems is determining

inverse functions — more precisely, determining preimages of functions. Generally, one

has a function Y = F (X1, X2, X3, . . .), and given Y and some of the Xk’s, one wishes

to compute distributions over the remaining parent variables. The relation between Y

and the Xk’s may be deterministic (i.e., if all the parents are known exactly, then Y

can be calculated exactly) or stochastic (i.e., the function F is distorted by random

noise). Examples of deterministic relations include thermodynamic laws, and examples

of stochastic relations include many empirical laws such as regressions of heat transfer

coefficients on Reynolds and Nusselt numbers. But even if a relation is deterministic,

a distribution over some parent might have considerable dispersion, due to dispersion

in the distributions of the other variables to which it is related. For example, the ideal

gas law states p V = nR T . If any two of p, V , and T are known, the third can be

determined exactly, but in the presence of measurement uncertainty in the two, we will

find a distribution over the third instead of obtaining an exact value.

An example of a belief network model which can be used for function inversion is

described in §8.1. In that model, a function relating water and air temperatures in

a heating coil can be inverted to yield an inferred distribution over the heat transfer

coefficient. There are several parent variables, but they need not all be measured. In

fact, if some measurements are missing, we can still compute a distribution over the

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 40

heat transfer coefficient, although this will have a larger variance than if an additional

measurement were available; this graceful degradation of the result is a feature of the

use of probability.

2.7.5 Value of information

It is obvious that information has value, since with more information we can make

better decisions (usually). However, the value of information is difficult to quantify.

Perhaps the most principled solution is to define a quantity which represents the value of

information with respect to decisions and outcomes in a specific problem; this approach

is proposed by Arrow [5]. Such a problem-specific index is difficult to construct, in

large part because the economic values of alternative decisions are difficult to asses.

Typically one retreats from a problem-specific formulation to a general index of the

value of information, which is precisely the approach taken in this dissertation.

Problem-independent indices of the value of information are often formulated in

terms of entropy or other information theory quantities. The general idea is that in-

formation is equivalent to a change in a probability distribution, that is, a change in

degrees of belief. Two indices of this type are employed in this dissertation. The first

is the Kullback-Leibler divergence [50, §1.3], KL(p, q), which measures the difference

between two probability distributions p and q over the same variable,

KL(p, q) =
∫

p(x) log
p(x)
q(x)

dx (2.22)

The Kullback-Leibler divergence can be interpreted as an index of the informativeness

of an observation: to assess the value of a specific observation of, say, Y = y, compute

KL(pX|Y =y, pX), where pX|Y =y is the posterior of X conditioned on the observation of

Y , and pX is the posterior of X omitting the observation. Heuristically, an observation of

Y which results in a large change in the posterior pX|Y =y yields a large KL(pX|Y =y, pX),

and is interpreted as a ‘very informative’ datum. The technical interpretation is given

in terms of the degree by which X can be compressed if Y has the observed value.3

3 If one is designing communications networks, then compression is indeed an economic criterion, but

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 41

The units of KL, and likewise the units of MI (discussed in the next paragraph), are

called ‘bits’ if the logarithm in Eq. 2.22 is the base-2 logarithm, and ‘nats’ or ‘nits’ if

the logarithm is the natural logarithm.

The quantity KL(pX|Y =y, pX), which is the informativeness of a particular obser-

vation, can be averaged over possible values of Y to obtain a second index, an index

of the general informativeness of Y w.r.t. X. It is interesting to note that averaging

KL(pX|Y =y, pX) w.r.t. the distribution pY yields the mutual information of X and Y :

∫
KL(pX|Y =y, pX) pY (y) dy =

∫ ∫
pX|Y (x, y) pY (y) log

pX|Y (x, y)
pX(x)

dx dy

=
∫ ∫

pXY (x, y) log
pX|Y (x, y)

pX(x)
dx dy

= MI(X, Y) (2.23)

Note further that while the Kullback-Leibler divergence is asymmetric, KL(p, q) 6=
KL(q, p), the mutual information is symmetric, MI(X,Y) = MI(Y, X). In the absence

of an observation — say, before making an observation — mutual information gives

an average informativeness of one variable on another. This can be used to determine

which variable to observe next, often meaning which experiment to carry out; further

discussion of mutual information will be found in §3.4, and some minor results which

are used elsewhere in this dissertation are established in Appendix F.

2.8 Probability is the glue that holds the world together

It is common in engineering problems to have several sources of information which

should be accounted for, merged, and reconciled. Probability models naturally integrate

data in several ways — this is one of the strongest arguments for using such models.

We considered in §2.7 several operations, which are essentially different ways of looking

at the same thing; let us now review some ways of composing or integrating different

things into a unified whole. We will examine how probability accounts for different

its applicability in other contexts is questionable; the reader will forgive me for blandly refraining

from this question. But see the quotations from Ernst Mach on the philosophy of science in Chapter 3.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 42

sources of information, and each of these connective functions will find use in some

model elsewhere in this dissertation.

2.8.1 Express relation of one variable to others with conditional probability

The relationships between a large number of variables can be decomposed into condi-

tional probability models which tell the relation of each variable to a subset of the other

variables. Usually such local models are easier to describe than a global model con-

taining all the variables. However, a decomposition into conditional probability models

preserves all the properties of the joint distribution of all variables — the joint distribu-

tion is immediately recovered by taking the product of all the conditional distributions.

A wide variety of relations can be expressed as conditional distributions, such as

thermodynamic relations and other constraints, relations determined from regression,

classification, and expert knowledge in the form of rules of thumb. Some of these

relations were discussed in §2.3.2.

2.8.2 Treat uncertainty in measurements, parameters, and hypotheses symmetrically

Under the laws of probability, all uncertain propositions are handled in the same way.

The origin of the uncertainty is immaterial, so uncertainty arising from sensor noise, un-

certainty about governing parameters, and uncertainty in hypotheses can all be treated

in the same way. Different rules for different kinds of uncertainty need not be derived.

The uniform manner in which rational degree of belief handles all forms of uncer-

tainty is in stark contrast to some other interpretations of probability. For example, in

the frequentist theory, a probability is a long-term frequency, which is physical prop-

erty of a system — thus there cannot be a probability distribution over a parameter

or hypothesis. We are still obliged to take non-frequency uncertainties into account,

so various kludges have been invented; for example, “confidence” in an hypothesis is

an attempt at handling a non-frequency uncertainty within the frequentist paradigm.

There is no need for adhockeries, however, since rational d.o.b. can be assessed for any

uncertain proposition.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 43

state-u.edu

politics.org

radio.com

Figure 2.4: A distributed belief network, comprising several local belief networks, is a

distributed database.

2.8.3 “Think locally, compute globally”

A decomposition into local probability models makes it natural to model functionally

or geographically distributed systems with belief networks. Models for the functional

or geographic units can be developed separately and perhaps by different people, and

then the units joined by conditional distributions which have a variable in one unit

conditioned on variables in another unit or units. Since each unit is a belief network,

the result is again a belief network, distributed over two or more processors (Figure 2.4).

The analysis which works at the level of the unit belief network immediately scales up

to handle the distributed belief network — new rules of inference need not be derived.

If we consider a belief network as a specialized database, a distributed belief network

amounts to a distributed database, with rules for organization, query, and update given

by the laws of probability.

INTRODUCTION TO GRAPHICAL PROBABILITY MODELS 44

2.8.4 Laws of probability permit incremental development

Distributed belief networks support “afterthought” analysis — it is easy to construct

a new belief network which refers to nodes in one or many existing belief networks

and makes use of the results already computed within those other networks, for some

purpose not originally foreseen. For example, there could be a number of belief networks

at various sites representing the HVAC systems of each site, and a research center might

publish total yearly energy use for each site, or categorize the faults observed at all

the sites. The summarizing belief network can be created without requiring that the

other networks to which it is connected be restarted, and the new network can also be

destroyed without affecting the others.

A local probability model in a belief network remains valid even when removed from

that belief network and plugged into some other belief network, because the interactions

between different parts of a belief network are not determined by its specification;

rather, interactions are computed at run-time. Thus one may simply copy a local

model from one belief network to another; this greatly speeds the development of new

belief networks.

2.9 A glance forward

Several topics were covered in this chapter. In §§ 2.1–2.5 the formal properties of prob-

ability were described, and in §§ 2.6–2.8 the use of probabilistic models — that is, the

connection between the formal world of probability and the “real world” in which we

need to solve problems — was introduced. The remainder of this dissertation is largely

devoted to describing general aspects of probabilistic models (Chapters 4–5) and some

particular applications of such models (Chapters 6–8), but before we move on to practi-

calities, let us make a slight detour to explore the origins of the concept of probability,

which plays so large a role in this work.

Chapter 3

ON THE CONCEPT OF PROBABILITY

3.1 Historical remarks

The concept of probability has a long and fascinating history. Let us review very

briefly some aspects of that history, relating especially to the evolution of the ‘rational

degree of belief’ interpretation of probability which is the basis of this dissertation, and

concerning also the nature of scientific induction. The interested reader is referred to

accounts of the history of probability [37, 78] and the philosophy of science [8, 73] for

more details on these topics; see also the excellent bibliographies and historical notes

in Refs. [41] and [25].

Probability is best understood as a branch of the theory of epistemology, that is,

that branch of philosophy which studies knowledge. The first advances that resulted

in recognizably modern doctrines were made by Skeptic philosophers of the school of

Carneades (ca. 214–129 B.C.), who in that era was the head of the Academy in Athens.

Skepticism was first formulated by Pyrrho (ca. 360–272 B.C.), who held that all appear-

ances are deception, and all conclusions baseless; a wise man will suspend judgement

about everything. The origins of Pyrrho’s opinions are obscure, but some see the influ-

ence of Indian philosophers, whom Pyrrho seems to have met when he traveled to India

with the court of Alexander the Great. Skeptical views had been expressed in Greek

philosophy before Pyrrho’s time — Xenophanes (born ca. 580 B.C.) remarked, “For

even if one chances for the most part to say what is true, still he would not know; but

every one thinks he knows” [31, Fragment 14] — but Pyrrho was the first to propose

systematic skepticism.

The philosophy of the Skeptics was mostly negative, but Carneades and his followers

did begin a positive development, which unfortunately was not completed for the better

ON THE CONCEPT OF PROBABILITY 46

part of two millenia. Though knowledge of truth escapes us, Carneades taught, we

still act according to the strength of our opinions, of which he recognized four degrees:

“(i) implausible; (ii) plausible (i.e. appear true ‘to an intense degree’); (iii) irreversible

(i.e. plausible and confirmed by other impressions); and (iv) tested (i.e. irreversible and

tested by the scrutiny of surrounding circumstances)” [36]. These degrees of plausibility

were illustrated by Carneades with the example of a rope on the floor of a darkened

house, which appears to be a snake. The idea that action should be contingent on

strength of belief is clearly allied with modern probability and decision theory, but

Carneades’ successors seem to have not further developed his doctrine of plausibilty.

It is also noteworthy that Carneades did not identify plausibility with being nearer to

truth, but only with strength of subjective opinion [36]. This, again, is compatible with

modern interpretations of probability.

Not until the 17th century was the study of probability revived. In the intervening

centuries doubtless many dice were thrown, and many ropes mistaken for snakes, but

none thought to analyze these phenomena. But the Chevalier de Méré, fond of los-

ing other people’s money at the gambling table like so many aristocrats, had the good

fortune to pose some questions to his acquaintance Blaise Pascal. There followed a cor-

respondence (1654) between the latter and Pierre Fermat, which was the basis for the

first systematic treatise on probability, De ratiociniis in ludo aleae by Christiaan Huy-

gens.1 Around the same time the study of social phenomena began, of which perhaps

the earliest example is John Graunt’s study of mortality (1662); the study of insurance

and annuities originated about the same time. These developments were followed some

decades later by the treatises of Jakob Bernoulli (Ars conjectandi, 1714) and Abraham

de Moivre (Doctrine of Chances, 1718), which established many of the now-familiar

algebraic results of probability, especially relating to the binomial distribution.

The mathematical theory of probability continued to develop throughout the 18th

1 The Latin edition appeared in 1657, but it was followed just three years later by an edition in the

vernacular, Van Rekeningh in Spelen van Geluck, which suggests the book had practical value: the

title translates “On reasoning in games of chance.”

ON THE CONCEPT OF PROBABILITY 47

century, as did the much messier study of social phenomena. It was noted early on

that the proportions of male and female children born are not equal, with male children

exceeding female children by a few percent. On this evidence, John Arbuthnot published

“An Argument for Divine Providence, taken from the constant Regularities observ’d in

the Births of both Sexes” in 1710. (Jaynes cites this as the first rejection of a null

hypothesis, namely that the birth ratio is 1:1, on the basis of observations which are

unlikely under the null hypothesis.) The question of the birth ratio was still of interest

in the early 19th century, when the Marquis de Laplace asked the French government

to carry out a careful census of male and female births.2 Laplace also asked Alexander

von Humboldt to investigate the birth ratio in the New World; Humboldt confirmed

that male births exceed female births in Mexico as in France. The investigations of

Humboldt and Laplace are described in the Essai philosophique sur les probabilités by

the latter [25]. Also in relation to social questions, in 1738 Daniel Bernoulli introduced

the concept of moral expectation, which is what is now called expected utility. The

adjective ‘moral’ refers to society or custom, and Bernoulli’s work was the beginning of

modern decision theory.

In the middle of the 18th century, an obscure cleric published a brief paper which

has since come to be seen as the foundation of the Bayesian interpretation of probabil-

ity, which is essentially the interpretation adopted in this dissertation. The cleric, of

course, was Thomas Bayes, and his paper was “An Essay towards solving a Problem

in the Doctrine of Chances” (1764), which presented a solution of the so-called inverse

probability problem. Given that one has observed a certain number of heads or tails of a

coin toss, what is the probability of observing a head on the next toss? The paper itself

is quite limited in scope, and it is questionable whether Bayes himself subscribed to the

convoluted philosophy which characterizes the modern Bayesian theory; the reader can

doubtless name at least two other movements, known by their founders’ names, which

2 The census was taken in 30 departments in the years 1800, 1801, and 1802. It is curious that the

government had the time and money to spend on Laplace’s research project while carrying on with

Napoleon’s wars.

ON THE CONCEPT OF PROBABILITY 48

would likewise be unrecognizable to the one to whom they are nominally most indebted.

Of all the philosophers and mathematicians before the 19th century, Gottfried von

Leibniz came closest to expressing the concept of probability as extended logic. Perhaps

this need not surprise us; Leibniz wrote voluminously on many topics, and was not much

concerned to make the whole of his work consistent, so whatever your point of view,

there may well be support for it in Leibniz.3 Be that as it may, let us review the opinions

of Leibniz, which very succinctly capture the spirit of the degree of belief theory.

Leibniz recognized, like Carneades, that we must often work with incomplete in-

formation. Except for phenomena which we witness directly, our knowledge is based

entirely on opinion at lesser or greater remove from the facts. We may be very sure

of our opinions, and they may be shared by many people, but they remain opinions

nonetheless. The following is found in Leibniz’ commentary [79] on Locke’s Essay on

human understanding.

Perhaps opinion, based on likelihood [vraisemblance], also deserves the name of
knowledge; otherwise nearly all historical knowledge will collapse, and a good deal
more. But, without arguing about names, I maintain that the study of the degrees
of probability would be very valuable and is still lacking, and that this is a serious
shortcoming in our treatises on logic. For when one cannot absolutely settle a
question one could still establish the degree of likelihood on the evidence, and so
one can judge rationally which side is the most plausible.

Despite our knowledge being mostly limited to opinion, we may still hope to find a

means of rational assessment of degrees of belief, and this is precisely the motivation

behind the desiderata presented in §2.1.

In a famous passage, Leibniz speculates that reasoning may be as mechanizable as

adding figures in a ledger. He dreamed of a characteristica universalis or ‘universal

symbolism,’ a kind of algebraic writing system, which would be to ordinary human

discourse as the notation of algebra is to mathematics. Apart from expressing ideas

in a universal form, the characteristica would make it possible to easily detect errors

3 For my part, I will conveniently ignore his monadology, and his theory that ours is the best of all

possible worlds.

ON THE CONCEPT OF PROBABILITY 49

of reasoning, just as mathematical notation is a clearer and more precise expression of

concepts that can also be expressed verbally. As Leibniz [72, p 592] envisions the scene,

If controversies were to arise, there would be no more need of disputation between
two philosophers than between two accountants. For it would suffice to take their
pencils in their hands, to sit down at their slates, and to say to each other (with a
friend as a witness, if they liked): Let us calculate.

This seems very close to the motivation for belief networks: once a problem is expressed

in terms of probability (the characteristica universalis of the world of belief networks),

any question can be answered as a simple calculation. The catch, of course, is in the

construction of a belief network suitable for a given problem. Leibniz seems to have

underestimated the effort required to simply restate a verbal problem in algebraic form.

There is the further complication that calculations which are conceptually ‘simple’ may

be intractable in practice, but new algorithms and faster computers should help us solve

that problem.

Leibniz, though he contributed technical writings in several fields of mathematics

and philosophy, was only a commentator in the field of probability. The development of

probability through the 18th century followed the lead of de Moivre and Jakob Bernoulli,

which had a much more restrictive scope than the expansive musings of Leibniz; dice,

coins, balls in urns, etc., remained the standard examples of probabilitistic phenomena.

The classical development culminated in the monumental Théorie analytique des prob-

abilités of Laplace, of which his Essai philosophique sur les probabilités is a popularized

summary. These works, which appeared early in the 19th century, were based on papers

Laplace wrote during the later decades of the 18th century. To Laplace, the future is

the necessary outcome of the past, the development being governed by deterministic

laws; apparent randomness is due simply to ignorance of initial conditions. This view

was stated [24, p 5] by Laplace in majestic and yet sublime rhetoric:

Thus we should visualize the present state of the universe as the effect of its past
state, and as the cause of that which is to follow. An intelligence which, at a given
instant, comprehends all the forces by which Nature is animated, and the respective
positions of the things which compose it — if it were so vast as to submit these

ON THE CONCEPT OF PROBABILITY 50

data to analysis — would encompass in the same formula the movements of the
largest bodies in the universe and the those of the lightest atom: nothing would be
uncertain to it, and the future, like the past, would be present before its eyes.

Yet even if initial conditions are known with arbitrary precision, outcomes may become

unpredictable even a short time into the future. This sensitive dependence on initial

conditions is a hallmark of that property called ‘chaos.’ Henri Poincaré, who understood

better than anyone in his time the implications of nonlinear dynamics, asked the pointed

rhetorical question [66, p 69],

Why is it that showers of rain, the storms themselves, seem to us to come at
random, in such a way that so many people find it perfectly natural to pray for
rain, but they think it laughable to pray for an eclipse?

In a chaotic system, even a supreme Intelligence might have trouble predicting the

future. But the statistical regularity of a chaotic system might be enough to work with,

as in the kinetic theory of gases.

The frequency interpretation of probability, which is at present the conventionally

accepted definition, has had a relatively short history. The origin of the frequency defi-

nition dates to the mid-19th century, and is associated with John Venn, R.L. Ellis, and

Antoine Cournot. In this definition, a probability is a long-term frequency, which is

well-defined for repetitive physical events or ensembles of similar instances. Probabil-

ities are not defined for any other kind of phenomenon. In the first half of the 20th

century, the frequency interpretation was accepted and promoted whole-heartedly by

R.A. Fisher, arguably the most influential figure in the history of statistics. Fisher

used tests of a null hypothesis in a wide variety of problems with great success, and

conventional textbook expositions of statistics contain many of his methods. As he was

tremendously intelligent, he could always find a way to solve any particular problem

he faced, and had little need of fundamentals. His emphasis on particular rather than

general methods colors conventional statistics down to the present day.4

4 There are those who have a none-too-exalted view of their own profession: “Statistics is defined as

the science of building and evaluating tools for data analysis. The word ‘tools’ is chosen on purpose

ON THE CONCEPT OF PROBABILITY 51

Fisher’s lack of interest in fundamentals is not shared by all frequentists. A state-

ment of the frequentist conceptual landscape was given by von Mises [80], which is

recommended for its clarity and concision. Richard von Mises accepted the application

of probability only to a phenomenon which had the characteristics of a collective, which

is essentially an ensemble of similar, random instances, and rejected all other uses. In

practice, the kinds of phenomena which fulfill the definition of a collective are social

phenomena, games of chance, and thermodynamic ensembles. He stated emphatically

(p 9, op. cit.),

Our probability theory has nothing to do with questions such as: ‘Is there a proba-
bility of Germany being at some time in the future involved in a war with Liberia?’

But against the conceptual foundation of frequentism, Ernst Mach wrote (quoted in

Ref. [47, p 179]),

Suppose we were to attribute to nature the property of producing like effects in
like circumstances; just these like circumstances we should not know how to find.
Nature exists once only. Our schematic mental imitation alone produces like events.

This passage occurs in a critique of induction, but it serves just as well as a criticism

of frequentism. The classification of ‘similar’ events, so far from being an objective

observation of physical phenomena, is itself a subjective construction. Frequentism is

in part an attempt to make probability objective, and remove the subjective element,

but the attempt is unsuccessful.

The idea of probability as extended logic began its technical development with Au-

gustus de Morgan in the mid-19th century. The extended logic interpretation was

accepted by J.M. Keynes and Harold Jeffreys in their works in the 1920’s. However,

Fisher’s influence outweighed theirs, and the frequency definition prevailed. In 1946,

R.T. Cox published a brief, elegant article [18] which is the original statement of the

development presented in Chapter 2. Only recently has the extended logic interpreta-

here. It indicates that statistics is close to engineering, and in some instances perhaps even close to

carpentry.” [26]

ON THE CONCEPT OF PROBABILITY 52

tion found widespread acceptance, and then largely in computer science; conventional

statistics is still dominated by Fisher.

3.2 On induction

Having arrived, in Chapter 2, at an acceptable theory of probability, it is natural to

ask what that theory might say about the natural world. In the classical scientific view

which, by now, has become part of common sense, an induction based on empirical

data is a meaningful statement about unobserved events, whether in the past, present,

or future, because of the uniformity of Nature. There are real objects out there in

the world, and these interact according to natural laws; we may not understand these

laws, but natural law is as much a permanent, real feature of the world as are rocks

and trees. Thus it is possible, at least, to find the connections between events. Yet

this common-sense view has been attacked with philosophical arguments which thus far

have been equally difficult to accept and to refute.

3.3 Hume’s critique of induction

If deduction is the art of drawing necessary conclusions, then induction is the art of

drawing unnecessary conclusions. In a sense, a deduction does not produce new infor-

mation, because the conclusion is implicit in the premises; for this reason deduction is

called non-ampliative. Induction, on the other hand, is ampliative: an induction con-

tains a statement about phenomena which have not been observed, such as a future

phenomenon, a present phenomenon which is hidden from view, or a past phenomenon

of which we have incomplete information. Thus an induction contains more than the

information in the observations on which the induction is based. The conclusion of a

deduction is entailed by the premises, so no contradictory conclusion can validly be

obtained from the premises. On the other hand, the conclusion of an induction is not

so entailed; from a set of observations, one can make as many generalizations as one

likes, some or all of them mutually inconsistent.

ON THE CONCEPT OF PROBABILITY 53

How, then, are we to judge which generalizations are ‘reasonable’ and which are

bogus? David Hume (1711–76) set out to seek an answer this question; he never arrived

at one, but along the way destroyed the reliance on induction which had become popular

in the West with the rise of science. (It is fair to say that a satisfactory response to

Hume’s criticism of induction has not yet been found, and if the problem seems to cause

little trouble these days, it is only by ignoring it.) In his Treatise of Human Nature

(1740), Hume emphasized the gulf between our beliefs and events in the world on which

they are based. I have seen the Sun rise many times, and I expect that it will do

so tomorrow, but there is no necessary connection between the Sun rising in the past

and rising tomorrow. I could establish, deductively, that the Sun will rise tomorrow if

there were a Uniformity Principle which stated that the future will be similar to the

past; but such a principle could only be established inductively, by observing that past

futures were similar to past pasts. Hume stated that our apparent reliance on induction

is only a psychological curiosity, and we carry on, despite the shaky foundations of

induction, only because of ingrained habit or custom. It would seem that the question

of the reasonableness of generalizations has an obvious answer: all generalizations to

unobserved phenomena are unjustified, and unjustifiable.

Hume’s conclusions (which are very hastily sketched here — see Ref. [8] for one of

many treatments) are psychologically difficult to accept, and yet difficult to disprove

philosophically. One response is to limit the applicability of induction: a statement such

as “The Sun will rise tomorrow” is not an assertation of a physical phenomenon, but

only a description of a state of mind. This sidesteps the difficulties Hume raised, because

induction no longer concerns the world, but only the mind. In a sense, deduction is

in the same boat — the clarity and precision of deduction only obtain by identifying

certain discrete chunks5 of the world with abstract symbols, and pretending that there

are no relevant data aside from the premises of the deduction. But a perfect deduction,

5 “In mentally separating a body from the changeable environment in which it moves, what we really

do is to extricate a group of sensations on which our thoughts are fastened and which is of relatively

greater stability than the others, from the stream of all our sensations.” Ernst Mach [47, p 180].

ON THE CONCEPT OF PROBABILITY 54

like a perfect circle, exists only in the mind and not in the world. This comforting view

is a little too easy, for it cannot explain the ‘unreasonable’ success we have in dodging

cars and finding groceries, not to mention scientific investigation.

Since a necessary connection between observed and unobserved events seems impos-

sible to establish, we might soften inductive statements to be probabilistic rather than

categorical, for example, “The Sun will rise tomorrow with probability 0.999.” But this

really gets us nowhere, philosophically speaking. If a probability is a physical property,

there is no necessary connection between the physical process and the stated number,

and if a probability is a degree of belief, the statement remains trapped in the mind,

without a connection to the world. In either case, we have not achieved a necessary

connection between the induction and an unobserved phenomenon. Several other kinds

of rescue plans have been put forth to lift induction from the abyss of subjectivity, but

none has yet succeeded; Ref. [73] describes several such plans and their shortcomings.

3.4 A probabilistic interpretation of ‘falsifiability’

Some aspects of Karl Popper’s theory of science, which emphasizes deduction as opposed

to induction and falsification as opposed to verification, can be interpreted in probabilis-

tic terms. As a way of defeating Hume’s attack on induction, Popper held [68, 69] that

science is exclusively deductive, essentially interpreting the apparent inductive process

of science as a deductive process. The only inference in science, he held, is the deduction

of consequences from general laws. We then use those predictions to devise experiments,

and prune away the hypotheses which fail experimental tests — that is, we keep only

those hypotheses which have not been falsified. An hypothesis which resists falsifica-

tion is said to be “corroborated.” Popper held that corroboration is not the same as

probability — in the terms used in this dissertation, we are not justified in having a

greater degree of belief in a corroborated hypothesis, for it has not been verified, only

not falsified.

Popper further argues that the information content of a scientific theory is, para-

doxically, inversely proportional to its probability. If a theory is compatible with all

ON THE CONCEPT OF PROBABILITY 55

possible observations, the falsity of the hypothesis cannot be decided on the basis of

observation. On the other hand, an hypothesis which is compatible with only a narrow

range of observations is, in a sense, less probable a priori, since fewer outcomes favor it.

This is directly related to the falsifiability requirement — to seek an informative theory

is to seek a theory which is incompatible with many observations, which is to say, one

which is falsifiable.

It is obvious that despite Popper’s claims to the contrary, corroboration works like

degree of belief: we base our actions (experiments, industries, buildings, etc.) on those

hypotheses which are corroborated; according to Bruno de Finetti, the quantities which

represent uncertainty in an economic analysis must behave according to the laws of

probability. (This is the import of the so-called ‘Dutch book’ theorem, described, e.g.,

in Ref. [16].) Popper’s theory of science can be interpreted in probabilistic terms as

follows.6 Let us agree to measure the informativeness of hypotheses according to their

mutual information with observables — that is, if we have hypotheses H1 and H2, then

we say H1 is more informative than H2 when MI(H1, X) > MI(H2, X), where MI is

the mutual information

MI(H, X) =
∫ ∑

h

pHX(h, x) log
pHX(h, x)

pH(h) pX(x)
dx (3.1)

As mentioned in §2.7.5, the mutual information is a measure of the average number of

bits by which we can compress the observations X; in assessing hypotheses according

to MI, we are essentially committing ourselves to a particular interpretation of science

— namely, that the goal of scientific inquiry is data compression.7 The important term

in the MI definition is the logarithm of the ratio of joint and marginal probabilities,

log
pHX(H, X)

pH(H) pX(X)
= log

pH|X(H|X)
pH(H)

= log
pX|H(X|H)

pX(X)
(3.2)

6 To the knowledge of the author, this interpretation has not been published elsewhere; but as it is a

very natural development, doubtless it has occurred to someone before.

7 Ernst Mach was perhaps the most well-known proponent of this view, as stated, for example, in the

selection on “The economical nature of scientific inquiry” in Ref. [47]. “The goal which it [physical

science] has set itself is the simplest and most economical abstract expression of facts.”

ON THE CONCEPT OF PROBABILITY 56

If the distribution over X changes greatly when H is known, i.e., there is a large

difference between pX and pX|H , then the logarithm is substantially different from

zero, and the larger the magnitude of the logarithm, on the average, the greater the

mutual information. If pX|H = pX , that is, the hypothesis H is flatly irrelevant to

X, the logarithm is identically zero and the mutual information is likewise zero. If we

can choose between two or more observations X1, X2, X3, . . ., none of which have been

realized, we should choose the one with greatest mutual information on the hypothesis

of interest. The more informative observation will be the one which has a very different

distribution pXk|H compared to pXk
.

We see, then, that three important aspects of Popper’s theory can be formally

captured by probability. (i) The consequences of each hypothesis are deduced according

to the laws of probability from the hypothesis; (ii) an experiment which can falsify

an hypothesis is found by the mutual information criterion; and (iii) corroboration is

interpreted as the posterior probability of the hypothesis. This tidy account omits two

substantial problems. The first is the origin of hypotheses: is there a formal process

for generating new hypotheses for previously unknown phenomena? The second is the

relation of degrees of belief to real events: we may compute a high degree of belief, but

as Hume informed us, a belief cannot have a necessary connection to future events. If

we haven’t yet solved these problems, at least we can console ourselves that no-one else

has either.

Chapter 4

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM

Let us put the degree of belief concept to work in a system for the construction

of distributed belief networks, which are useful models for diagnosis and prediction in

geographically or functionally distributed systems. Belief networks for such systems

have lately been the object of study by Xiang [86] and his students [15, 39] who refer

to “multiply-sectioned Bayesian networks” which have a certain strict definition. In

this dissertation the term “distributed belief network” will be used rather loosely to

mean a probability model represented as an acyclic directed graph and implemented

on multiple processors which communicate by means of a standard networking proto-

col; that part of a distributed belief network implemented on a particular processor

will be referred to as a “component network” or “subnetwork.” These definitions are

deliberately vague, so as to include a wide range of interesting architectures and imple-

mentations. Broadly speaking, we will be as much interested in the “distributedness” as

in the “belief-networkness” of distributed belief networks, and the interaction between

these two aspects will lead to interesting problems.

Figure 4.1 shows a typical distributed belief network. Each one of the components

A, B, C, and D is itself a belief network. The variables within the belief networks are

identified by network.variable. For example, variable t in subnetwork A is referred to

as “A.t.” This scheme avoids name conflicts when variables in two networks have the

same name. Note that in the example network, there is one loop (that is, an undirected

cycle) wholly contained within subnetwork A, but there is another loop induced by

the dependencies of B and C on variables in A. Such induced dependencies make

life difficult for inference algorithms, because the known algorithms for handling loops

require non-local information — that is, it is not possible (yet) to compute inferences

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 58

A.u

B.p

B.q

C.x

C.y

C.z

D.n
A.s

A.t

A.v

Figure 4.1: An example of a distributed belief network, composed of four subnetworks,

A, B, C, and D.

in terms of a single variable and its immediate neighbors. Rather, groups of variables

must be handled all at once, and the groups may be very large even for simple problems.

A local algorithm for inference in a distributed system1 is desirable, but may not be

feasible in the presence of loops. A general inference algorithm for belief networks with

loops has not yet been attempted for the riso project; some comments on this topic

will be found in §5.9.

The representation of geographically distributed systems is perhaps the prototypical

application of distributed belief networks, although by no means the only application.

1 “Distributed systems — What are they made of? Where do they come from? They’re made of

string! Yes, good old string. You know where you are with string!” — Attributed to a computer

science professor.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 59

It is natural to represent each geographical unit with a belief network, and to represent

the flow of information from one locale to another by edges connecting variables in

separate belief networks; different kinds of messages travel with the arrows and against

the arrows. Such a scheme is all the more reasonable if the cost, time lapse, or difficulty

of transferring information from one locale to another is large compared to the compu-

tations required for inference within one belief network. In that case, we will want to

carry out as much computation as possible locally, and only transmit messages when

necessary.

In addition to modeling geographically separate systems as separate belief networks,

one can use distributed belief networks as a means of decomposing a modeling problem

so that modeling of the pieces can proceed independently. For the same reasons that

other kinds of software are customarily constructed piece by piece, it could be convenient

to construct sub-networks separately, then connect them together through common

variables. A decomposition into sub-networks will make it easier to comprehend the

model and present it to other people. The components of a distributed belief network

can be treated as independent software modules and reused for purposes other than

those for which they were originally constructed. A great deal of work may go into

the design and implementation of a belief network for a particular engine, reactor,

pump, compressor, etc., and it will greatly speed development for new applications if

the belief networks previously devised for similar systems can be reused. Generic belief

networks for some special purposes, such as sensor models, time-series filtering, and

hidden Markov models, can be easily constructed; it is foreseen that one could make

available a library or archive of belief network components, which could be used as

templates or building blocks from which particular applications could be constructed.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 60

4.1 Features of the riso system

A prototype implementation of distributed belief networks, named riso,2 has been

constructed. Progress has been made in several areas, in both theoretical and practical

matters. Let us survey the accomplishments of the riso project.

4.1.1 Representation of belief networks with heterogeneous distributions

A necessary first step towards a flexible and extensible modeling system for general

applications is the ability to represent belief networks composed of arbitrary conditional

probability distributions. In order to make the belief network more comprehensible to

domain experts, and to simplify the specification and modification of the belief network,

probability distributions from the problem domain should be directly represented in

the belief network. Software has been implemented in riso which makes it possible to

represent several kinds of basic distributions, and riso is designed so that additional

types of distributions can be implemented without changing the existing code at all.

In contrast, most currently available belief network software can only handle a few

well-known types of distributions, and it is assumed that if a distribution arising in a

problem does not fall into a known category, then that distribution will be represented

by an approximation belonging to a known category.

4.1.2 Inference in polytrees with arbitrary distributions

riso implements a “just in time” approximation scheme for inference with arbitrary

conditional distributions described in Chapter 5. The riso inference algorithm is based

on the polytree algorithm for belief network inference, in which “messages” (predictive

distributions called π-messages and likelihood functions called λ-messages) are com-

puted. The posterior distribution for a given variable depends on the messages sent to

it by its parents and children, if any. In this scheme, an exact result is computed if such

2 So called because the nodes in belief network diagrams look like nice plump grains of rice; see

Figure 4.1.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 61

a result is known for the incoming messages, otherwise an approximation is computed,

which is a mixture of Gaussians or a monotone spline. The approximation may then

be propagated to other variables. Approximations for likelihood functions (λ-messages)

are not computed; the approximation step is put off until the likelihood function is

combined with a probability distribution — this avoids certain numerical difficulties.

In contrast with standard polytree algorithms, which can only accomodate distribu-

tions of at most a few types, this heterogeneous polytree algorithm can, in principle,

handle any kind of continuous or discrete conditional distribution.3 With standard al-

gorithms, it is necessary to construct an approximate belief network, in which one then

computes exact results; the heterogeneous polytree algorithm, on the other hand, com-

putes approximate results in the original belief network. The advantages are that the

approximations computed by the new algorithm are all one-dimensional and thus easier

to compute, and, more importantly, that the belief network can be directly represented

using the conditional distributions most appropriate for the problem domain.

4.1.3 Implementation of distributed belief networks

In extending the usual single-processor computational model to multiple processors,

several interesting problems arise, which must be solved for the successful implemen-

tation of a distributed belief network. In keeping with the distributed computational

model, no single processor has information about the structure of the entire distributed

belief network, and inferences are to be computed using only local quantities. However,

this leads to difficulties (which have not yet been resolved) when there are loops in

the distributed belief network which contain nodes in two or more component networks.

Also, temporal dependencies in one network lead to temporal dependencies in any other

network connected to some of its variables; this may lead to intractable computations,

especially if some of the dependencies involve different time scales. While these prob-

lems of induced dependencies have only been identified, and not resolved, progress has

been been made in other areas. A general policy is proposed for publishing information

3 Some other approaches for inference in heterogeneous belief networks are described in §5.9.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 62

as belief networks. A modeling language for the representation of distributed belief net-

works has been devised, and software has been implemented to compile the modeling

language and carry out inferences.

A prototype implementation of some of these ideas about distributed belief networks

has been constructed using the Java programming language, in particular the Remote

Method Invocation (RMI) mechanism for passing information between sub-networks.

As a Java application, riso will run on any hardware that supports the Java virtual

machine. Furthermore, riso has been designed without a graphical user interface, to

make it possible to run the software on machines without a display; a rudimentary user

interface has been constructed for testing purposes.

The feature of greatest interest in RMI is the representation of remote variables (Java

program variables on another processor) as local references. This makes it possible to

write code without worrying too much if the variables involved are local or remote — the

RMI software on the local processor will communicate with the corresponding software

on the remote processor as needed. Thus RMI is a very convenient form of interprocess

communication, because from the programmer’s point of view the communication looks

like calling functions, passing arguments, and return values, while bothersome details

of socket connections remain well-hidden.

A parser for the riso belief network grammar has been implemented; the riso

grammar (Appendix A) is loosely based on the original proposal of the Belief Network

Interchange Format (BNIF) grammar [3].

In contrast to some other implementations of distributed systems for inference (e.g.,

the Integrated Diagnostic System [85]) riso is not designed to link diagnostic systems

based on different software architectures and different reasoning paradigms. Probability

was chosen as the sole medium for the expression and exchange of information, for the-

oretical reasons cited in Chapter 2, which suggest that other paradigms for reasoning

under uncertainty are either essentially the same as probability or else fundamentally

weaker. Choosing only one representation of uncertainty also greatly decreases the com-

plexity of the software implementation. Choosing a single implementation language,

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 63

and a single collection of classes within that language, also greatly simplifies the imple-

mentation. The choice of a strictly probabilistic system implemented in Java has the

advantages of unity, simplicity, and comprehensibility, both conceptual and practical.

4.2 Communication in distributed belief networks

In this section, let us briefly review some of the issues surrounding communication in

distributed belief networks.

4.2.1 Local versus global control of communication.

Throughout this dissertation it will be assumed that communications between the com-

ponents of a distributed belief network will be restricted to immediate neighbors. That

is, belief network A can communicate with another, B, only if some variable in A has a

parent or child in B. This local communication model, inspired by the idea of belief net-

works representing independent agents, is to be contrasted with a global communication

model in which a central mechanism organizes communications between all components

of a distributed belief network. The local communication model is better suited to a

system in which component belief networks are created and executed independently, for

potentially different purposes.

4.2.2 Publishing information as distributed belief networks.

There is considerable promise in the idea of publishing information on the Internet in

the form of belief networks. Just as people can now connect to data sources in the

form of files or Common Gateway Interface (CGI) and then reprocess the information

for their own purposes, it should be possible to connect to belief network interfaces to

obtain information in the form of probability and likelihood messages, which can then be

used for purposes not specifically foreseen by the originators of the belief network. The

original belief network together with any variables which are created as descendants of

its interface variables will comprise a larger belief network. The new child variables may

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 64

in turn be linked to still others through their own interface variables; a belief network

of any size could be constructed in this piecemeal fashion.

Allowing a belief network to reference variables in another raises interesting questions

concerning the permission to pass messages within the overall belief network. Strictly

speaking, entering evidence in a subnetwork requires that information be passed to

other subnetworks, so that attaching a subnetwork and entering evidence will change

the beliefs computed in existing subnetworks. It is easy to construct examples in which

the agent represented by a component of a distributed belief network would not want

to accept information supplied from variables outside its component. For example, an

energy use forecasting service would doubtless have parent variables such as current

and forecasted temperature which represent the influence of weather on energy use.

However, the weather service which maintains temperature variables may wish to avoid

having their distributions modified by downstream evidence, over which the weather

service has no control.

We could control the influence of downstream evidence by establishing message pass-

ing permissions within distributed belief networks. Let us assume that a belief network

can be linked to another only in such a way that does not disturb existing conditional

probability assessments in the linked-to belief network. This rules out linking one belief

network to another by specifying that some variable in the first is a parent of some

variable in the second; but we can specify that some variable in the first is a child of

some variable in the second without changing any conditional probabilities in the sec-

ond network. Then there is essentially only one kind of message-passing permission to

consider, namely

Permission to affect belief computations in a subnetwork containing a parent node
by entering evidence into a remote child node.

There are several subtleties to consider in this apparently simple problem.

1. Loops: in a polytree, “A does not accept messages from B” is equivalent to

“A ignores evidence in B,” but these two propositions are not equivalent in the

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 65

presence of loops.

2. Transitivity: A accepts information from B and B accepts information from C

implies A accepts information from C. What if A says, “I don’t want information

from C,” but B has accepted a π- or λ-message from C?

3. Access: for a given component belief network A, which other belief nets may

create children of variables in A?

The first two topics mentioned, loops and transitivity, refer to technical problems of a

graphical flavor. The third, access, only concerns software design choices we can make

and so it is easier to handle. Let us dispose of the easier topic first.

Access. Access to variables requested by a remote belief network could be handled at

several levels: by the name of the remote belief network, by the host on which the

remote belief net is running, or by the domain in which the host lives. It is reasonable

to assume, for security purposes, that any access permission not explicitly granted

is withheld. One might expose all the variables in a belief network, or only certain

interface variables might be exposed; in either case the name of the belief network and

any remotely visible variables would be published in a digest or directory, as hypertext,

say.

Transitivity. If we wish to preserve locality of communication, it seems we must al-

low transitivity of message acceptance. However, transitivity could lead to undesired

consequences. If A does not accept messages from C but B does, and A accepts from

B, then A must somehow sort out the information from C and ignore it when A re-

ceives messages from B. Of course, such a separation is not possible given the usual

message-passing algorithms, which compute a message representing the relevant infor-

mation in a form which does not reveal or identify the source of the information. It

would appear that the only alternative to requiring transitivity is to tag each message

according to the belief networks which contributed information to it, and to transmit

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 66

multiple tagged messages when a standard algorithm would only transmit one, each

tagged message based on different evidence. Although a little clumsy, such a scheme is

simple conceptually and easy to implement, and perhaps necessary if we are to avoid

transitive message passing.

Loops. The computation of probabilities in the presence of loops in the belief net-

work requires the use of non-local information, and for this reason may be difficult to

implement in a distributed belief network. Recall that we have assumed there is no

central mechanism to coordinate the individual belief networks which are the compo-

nents of a distributed belief network, and that all coordination must occur through local

communication. To make matters worse, local changes to a component may introduce

loops into the distributed belief network in a way that is not immediately apparent

from the components point of view. Local editing of a component may even introduce

directed cycles — this must be detected and prevented; but who will give the approval

for proposed changes to a belief network structure, if not a central authority? It may be

possible for the processors to cooperatively detect and handle loops; see §5.9 for some

comments on this topic.

4.2.3 Computing inferences in distributed belief nets

To accomodate the geographically and functionally distributed belief networks which

are the focus of this dissertation, it is of great importance that the inference algorithms

used allow for locality of computations and heterogeneous conditional distributions. To-

ward this end, the central inference algorithm of riso is the polytree algorithm [63].

Unfortunately, this algorithm has limited applicability to belief networks which contain

loops (that is, undirected cycles). In riso loops will eventually be handled by a con-

ditioning algorithm [63, 13], using a loop-cutset algorithm [7], but the details of this

scheme have not yet been worked out. On the brighter side, the polytree algorithm does

lend itself well to accomodating different types of conditional distributions.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 67

4.3 Solutions to communications problems

Several interesting problems arise when a belief network is implemented in a distributed

computing system. The usual network communication problems take on forms peculiar

to belief network computations. Among these problems, the following have been handled

in the design of riso. Appendix B describes further details of the riso communications

architecture.

4.3.1 Locating and connecting belief networks on different hosts

When a belief network is loaded, riso advertises its name in a globally–visible list,

called the “registry.” Belief networks in other processes on the same host or on different

hosts can use the registry to obtain a pointer to any registered belief network. If the

parent spruce/weather.humidity referred to by a belief network cannot be located in the

registry on the host spruce, an attempt will be made to have the weather belief network

loaded onto spruce so that weather becomes available; this is similar in spirit to the

resolution of function references in libraries. If the host name is omitted, the host of the

belief network in which the reference occurs is assumed. There will usually be a process

running on each host which can load any belief network from a description on the file

system of that host, or from a description string transmitted over the Internet. However,

only a short program need be installed on each host, and additional software can be

loaded as needed from another host. In particular, classes named in a belief network

description will be copied (by the Java runtime software) to the host on demand; the

complete riso software need be installed on just one machine.

4.3.2 Communicating π- and λ-messages between belief networks

The messages transferred between belief networks are probability distributions and like-

lihood functions. These are expressed in parametric forms, which may be very short

(e.g., a Gaussian can be described by just a few numbers) or very long (e.g., a mix-

ture of Gaussians may contain an arbitrary number of parameters). Probabilities and

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 68

likelihoods are represented as objects within the riso software, and these objects are

automatically converted into a block of data which is transferred across a socket con-

nection. Thus a request for a message from a remote belief network is implemented as

a function call, and the message which is returned appears to be the return value of

the function. As part of the general “lazy” computational policy of riso, messages are

requested only when they are needed; this cuts down on the relatively large overhead

of passing messages between remote belief networks.

Aside from π- and λ-messages, other kinds of messages are passed in riso dis-

tributed belief networks. When evidence is entered or removed from a node X in the

network, messages are sent to all parents and children of X, telling them that the π-

and λ-messages originating from X are no longer valid; these “invalid π- or λ-message”

messages are propagated as appropriate to other nodes not d-separated from X. Any

node receiving such a message knows that its posterior must be recomputed, but the

computation is postponed until a request for the posterior is received.

4.3.3 Coping with communication failures

Communication failures can occur, for instance, when a host crashes or the process

running a belief network is killed. When a π- or λ-message is required and an attempt

to communicate with the corresponding parent or child node fails, riso attempts to

re-establish the link using the same registry look-up algorithm by which the link was

originally established. If the attempt to reconnect fails as well, in order to make some

progress riso assumes that no evidence is available through the lost parent or child.

Due to the distinction between parents and children in the computation of a posterior

distribution, lost parents are treated differently from lost children. A lost child is simply

dropped from the list of children of the variable which requested the λ-message, since

in the absence of evidence from the child, the child has no effect on the computation

of the posterior. A lost parent must be kept on the list of parents, but until the parent

becomes available again (through restarting the process running the belief network),

the prior for the parent will be substituted for any request for a π-message from that

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 69

parent, since in the absence of evidence the π-message from the parent will simply be

the parent’s prior. The parent’s prior is sent from the parent to any remote child when

the child first makes contact with the parent.

4.3.4 Security issues

In distributed belief networks, there are the usual problems of who can access which

data, and these problems can be handled by well-known authentication, authorization,

and encryption algorithms. However, there is at least one security problem which is

peculiar to belief networks, namely that the naming X as the parent of Y implies

(according to the laws of probability) the transfer of information from the child Y to

the parent X as well as from X to Y . This suggests that we could affect degrees of belief

in a network maintained by the Weather Service (let us say) by connecting some child

variables and then introducing evidence into our sub-network. It is foreseen that the

each belief network should be able to specify which others can propagate information

up from child nodes, but this policy has not been implemented yet in riso.

4.3.5 Parallel computation

The mechanism described for creating distributed belief networks — scope rules plus

RMI — could be automated. One could analyze a belief network to determine which

parts are the “most independent,” then ship the parts to other hosts; inferences could be

managed as if the entire network were on a single host, perhaps using a message-passing

policy outlined by Pearl [63, pp 219–222]. This approach is reminiscent of data-flow

analysis in parallelizing compilers, as described, for example, in Ref. [2].

4.4 Example: Monitoring a Distributed System

To illustrate the particulars of riso which have been described in this chapter, let us

consider a more realistic belief network than the one presented in Chapter 1. Our

example is a simple distributed belief network for monitoring a distributed system. We

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 70

will examine the mechanical details of the representation of the domain model as a

belief network and some inferences on the model. More substantial applications, with

less riso-specific detail, will be presented in Chapters 6, 7, and 8.

Consider the problem of monitoring a geographically distributed system. Let us

model each component of the system as a separate belief network, each of which has a

discrete status variable and one or two variables on which we can make measurements;

in what follows we’ll call these “measurable” variables. (We will distinguish between the

variable we are trying to measure and the measurement itself. The measurement may be

more or less accurate, and can be affected by a failure of the sensor or measuring device.

The monitor3 belief network shows a simple measurement model, comprising a mea-

surable variable, the sensor status, and the measurement.) The monitor is represented

as a belief network which contains only one variable, a “or” gate which computes the

probability that at least one of the status variables is non-zero. We adopt the conven-

tion that status equal to 0 represents the normal status, and any other value represents

an abnormal status.

The riso code for the monitor subnetwork names the parents of the “or” gate as

the status variables of the three individual monitor subnetworks.

BeliefNetwork combine

{
Variable or

{
type discrete { "all OK"

"at least one failure" }
parents { phoenix.ef.boun.edu.tr/monitor1.s

heaventemple.mit.edu/monitor2.s

www.cdsoft.de/monitor3.s }
distribution OrGate

}
}

In this belief network and others, the “BeliefNetwork” tag not only begins the belief

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 71

m1

m2

s s

ss

mmnt

mble

or

s

m

monitor3

combine

monitor2

monitor1

Figure 4.2: A distributed belief network for monitoring geographically distributed equip-

ment. Key: s = “status,” m or mble = “measurable,” mmnt = “measurement,” and ss

= “sensor status.”

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 72

network description, but names the Java class which knows how to parse the description

and which implements the various message-passing functions necessary for computing

inferences. Likewise, “Variable” begins the description of a variable within the belief

network and also names the class which parses the description and implements the func-

tions needed for a variable. In this scheme, one could implement software which accepts

an alternative description by simply extending the BeliefNetwork or Variable class.

For example, no provision has been made in riso for representing display information

such as the color and position of variables’ nodes, but such information could be stored

by a FancyVariable which extends Variable. More importantly, a conditional distri-

bution represented in a riso belief network description is tagged with the name of the

class which implements it, and that class contains the code to parse the description and

implement the probability functions needed for the inference algorithm. Thus special-

purpose distributions can be created as the need arises in an application, and existing

code for belief network objects and for variables need not be changed, including, above

all, the inference algorithm.

Let us briefly consider the distributions encoded in the belief networks in this exam-

ple.4 In the interest of brevity, only the description of monitor2 is shown. The monitor1

belief network contains a simple “näıve Bayes” model. In monitor2, variable mmnt has

a conditional Gaussian dependence on mble, and s is a logistic discriminant model with

two classes. Thus monitor2 shows a conventional classification model, which computes

class probabilities conditional on its inputs m1 and m2, integrated into the monitoring

system.

4 The belief networks discussed in this example are intended for illustration only, in particular the

transmission of messages between variables. The complete riso description files for these belief

networks can be found at http://civil.colorado.edu/~dodier. For clarity, some identifiers have

been abbreviated in this chapter.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 73

BeliefNetwork monitor2

{
Variable s {

type discrete { "OK" "goofed" }
parents { m1 m2 }
distribution SquashingNetworkClassifier

{ ... } }

Variable m1 { distribution Gaussian

{ mean 30 std-deviation 4 } }

Variable m2 {
parents { m1 }
distribution ConditionalGaussian {

conditional-mean-multiplier { 0.3 }
conditional-mean-offset { 8 }
conditional-variance { 28 }

}
}

}

In monitor3, a näıve Bayes model is extended with a simple measurement model; more

sophisticated measurement models are described in Chapter 6. The measurable variable

mble is not directly known; only the measurement mmnt is observed. The measurement

depends on the status of the sensor ss, as well as the measurable variable. The measure-

ment is a noisy function of the measurable variable when the sensor is working correctly,

and the measurement is just zero when the sensor is broken; this is common in sensors

which output a voltage. However, in the model specified in monitor3, a measurement

of zero can also occur when the sensor is working correctly. Finally, combine contains a

single variable, or, which represents the probability that any of its parents (the status

variables monitor1.s, monitor2.s, and monitor3.s) is non-zero.

Each belief network is running on a different host: belief network monitor1 on host

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 74

phoenix.ef.boun.edu.tr, monitor2 on heaventemple.mit.edu, monitor3 on www.cdsoft.de,

and combine on sonero.colorado.edu. The first and last are Linux machines, and the

other two are running Windows. The description of combine specifies, in the list of

parents for the or variable, which belief network is running on which host.

First, let us set monitor2.m1 to −150. Querying monitor2.s (that is, computing the

its posterior distribution), we find Pr(s = “OK”|m1 = −150) = 0.2974. This result

averages over values of the missing variable monitor2.m2; querying m2 we see that its

posterior is a Gaussian distribution with mean −37 and standard deviation 5.2.

So far, no messages have been passed from one belief network to another. Now

let’s set monitor3.mmnt to 23 and query combine.or. A π-message is sent from each

monitoring belief network to the “or” gate. For monitor1.s, this is just its prior since

no evidence has been introduced, and for monitor2.s, the π-message is just the poste-

rior which was computed a moment ago. But for monitor3.s, computing the π-message

to combine.or requires that evidence be propagated up from monitor3.mmnt; ss sends

a π-message to mmnt, which sends a λ-message to mble, which sends a λ-message to

s, which then sends the π-message to combine.or. Note that none of the messages in

monitor3 were computed until combine.or asked for a π-message. We find the posterior

of combine.or has the probability that or = “all OK” is 0.2759, given the upstream evi-

dence in monitor2 and monitor3. The message-passing scheme is described in generality

in Chapter 5.

Introducing evidence monitor1.m = 57, the posterior probability of or = “all OK”

drops to 0.01705. Now there is evidence in all three monitor belief networks. Fig-

ure 4.3 shows the messages which have been communicated between the variables in

the four belief networks comprising our distributed monitoring system. Each message

is requested from the variable which needs the it — a message is not constructed unless

it is required; this is the “lazy” computational policy. Also, messages within a belief

network (that is, within the boxes shown in Figure 4.3) are transferred as return values

from functions, while messages between belief networks are transmitted as blocks of

data on a socket connection, and reconstituted into program objects by their recipient.

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 75

π

π

π

π

π
π

λ

λ

λ

monitor3

combine

monitor2

π

monitor1

Figure 4.3: π- and λ-messages transmitted within a distributed belief network to satisfy

a query on combine.or. Evidence nodes are shaded.

Let’s see what happens in two scenarios involving a failure. The first scenario is a

communication failure: heaventemple has crashed, leaving monitor2 inaccessible. If we

query combine.or, an attempt is made to contact monitor2 to supply a π-message. The

attempt fails, so combine.or uses the marginal prior for monitor2.s which was computed

when combine.or first connected to monitor2.s. The prior for monitor2.s gives proba-

bility of “OK” equal to 0.03227, and this value is used to update combine.or, yielding

the probability of “all OK” equal to 0.001833. Note that the prior over monitor2.s must

be computed by integrating over its parents m1 and m2; priors for status variables in

monitor1 and monitor3, which are root variables, are specified directly.

The second scenario is a sensor failure in monitor3. The sensor fails, and its output

is zero. Querying monitor3.ss, we find that Pr(“sensor OK”|mmnt = 0) = 0.2309.

Although the likelihood for “sensor OK” indicates that the measurement mmnt = 0 is

OVERVIEW OF THE RISO BELIEF NETWORK SYSTEM 76

much more typical of a failed sensor than one operating correctly, with

Pr(mmnt = 0|“sensor OK”)
Pr(mmnt = 0|“sensor not OK”)

= 0.003032

the posterior for “sensor OK” is appreciably greater than zero due to the 99:1 prior odds

in favor of “sensor OK.” Since mmnt is the common descendent of s and ss, information

can travel from ss to s via mmnt. Querying s, we see that the posterior probability of

“OK” is 0.9213, not much different from its prior value of 0.9000. However, if we set

the sensor status ss equal to “OK,” we find a greater change in the posterior of s. Now

the probability of s = “OK” is 0.9755. The effect of the measurement on the status

variable s was weakened because the evidence favored a failed sensor.

4.5 Where is the magic hidden?

In this chapter, the broad design of a system for probabilistic reasoning was described,

and a simple monitoring application was given. However, the calculations which go on in

such a system were glossed over. Once the conditional and prior probability distributions

are established for all the nodes in a belief network model, various intergrations and

other transmogrifications are necessary to obtain a final result. In the next chapter, we

will examine the formulas and algorithms by which the probability distributions which

comprise a belief network description are transformed into useful results.

Chapter 5

AN INFERENCE ALGORITHM FOR POLYTREES WITH

HETEROGENEOUS DISTRIBUTIONS

This chapter describes a general scheme for accomodating different types of condi-

tional distributions in a belief network. The algorithm is based on the polytree algo-

rithm for belief network inference, in which “messages” (probability distributions and

likelihood functions) are computed. The posterior for a given variable depends on the

messages sent to it by its parents and children, if any. In this scheme, an exact result

is computed if such a result is known for the incoming messages, otherwise an approx-

imation is computed, which is a mixture of Gaussians. The approximation may then

be propagated to other variables. Approximations for likelihood functions (λ-messages)

are not computed; the approximation step is put off until the likelihood function is

combined with a probability distribution — this avoids certain numerical difficulties.

In contrast with standard polytree algorithms, which can only accomodate distribu-

tions of a few types at most, this heterogeneous polytree algorithm can, in principle,

handle any kind of continuous or discrete conditional distribution. With standard al-

gorithms, it is necessary to construct an approximate belief network, in which one then

computes exact results; the heterogeneous polytree algorithm, on the other hand, com-

putes approximate results in the original belief network. The most important advantage

of the new algorithm is that the belief network can be directly represented using the

conditional distributions most appropriate for the problem domain.

5.1 Overview of the inference problem

The computation of posterior distributions is much simplified if the conditional distri-

bution for each variable comes from a certain small set of distributions. The best-known

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 78

case is that of discrete conditional distributions; several algorithms have been developed

(see, for example, Ref. [63]) for computing posterior distributions, and there are algo-

rithms which can handle discrete networks which contain loops. Likewise, conditional

Gaussian distributions are also well known [63]. An algorithm is also known [29] for a

belief network in which each conditional distribution is a mixture of conditional Gaus-

sians (with a linear dependence of the mean and no dependence of the variance), but this

algorithm applies only to a polytree network. This algorithm has been extended [30] to

a polytree containing both continuous variables (with mixtures of conditional Gaussian

distributions) and discrete variables.

In many problems, though, the most natural probability distributions are neither

discrete nor Gaussian, and constructing approximations within those well-known classes

may yield a representation which is verbose1 and which obscures the conceptual basis

of the natural model. It seems desirable, then, to represent the natural probability

distributions directly, and to only compute approximations (from the class of mixtures

of Gaussians, for example) when necessary. The representation problem is easily solved

by equipping each variable with type information and suitable parameters, and the

difficult part is the computation of posterior distributions. Only for certain kinds of

conditional distributions will it be possible to compute the partial results necessary for

the posterior, so in many cases some kind of approximation is necessary. The following

approach is taken in riso:

Directly represent the conditional distributions from the problem domain; com-
pute an exact result for the posterior when possible, and otherwise compute an
approximation to the exact result.

Note that this is different from the approach implicit in present belief network imple-

mentations, which is this: if a distribution does not fall into a well-behaved category

(discrete or Gaussian), make a well-behaved approximation, then compute an exact

1 For example, a discretized model for a small problem involving waste water treatment requires more

than 300 kilobytes to store the model, and the engineering knowledge in the model is completely

obscured.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 79

posterior using the approximation.

We want to keep representations in a belief network close to the original problem

domain. This will make it easier to describe and comprehend a belief network, especially

for domain experts who are not particularly well-acquainted with belief networks; if one

views a belief network as a kind of probabilistic database [63] then it is important

that such people find it intuitive and productive to work with belief networks. As

an important part of this approach, the conditional distributions in the network must

match the ones which domain experts are accustomed to working with.

The reader will note that the scheme described in this chapter is similar in spirit

to the adaptive discretization algorithm described in Ref. [48] and the combination of

exact inference and Gibbs sampling in HUGS [46]. In each case, exact and numerical

methods are combined to extend belief network inference to a larger class of problems.

5.2 Additional nomenclature of polytrees

The inference algorithm described in this chapter is based on a few simple concepts

which are expressed in a terminology which may be unfamiliar to the reader, so let

us take a moment to review the nomenclature associated with polytree graphs. Some

of these terms were introduced in §2.6, but for clarity of exposition we will review

them, and introduce several more which are peculiar to the description of the polytree

inference algorithm.

Figure 5.1 shows a typical polytree. There is at most one undirected path (i.e.,

ignoring direction of the arrows) between any two nodes. Suppose an arrow is added

between the two nodes at upper left, as shown in Figure 5.2. The result is not a

polytree, because there are at least two undirected paths between some two nodes; for

example, there are two paths from the node labeled A to the node B. Non-polytree

belief networks are important in applications, but require a more sophisticated inference

algorithm than the one used by riso.

Let us focus on a particular node within a polytree belief network, as illustrated in

Figure 5.3. This node represents one variable, say X. A node at the tail of an arrow

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 80

Figure 5.1: A typical polytree belief network.

leading into X is called a parent of X, while a node at the head of an arrow leading

out of X is called a child of X. A node with no parents is called a root node, and a

node with no children is called a leaf node. As described in §5.3, the polytree inference

algorithm is defined in terms of probability distributions and likelihood functions called

π-messages and λ-messages, respectively. The messages associated with a particular

node X are shown in Figure 5.4. π-messages (predictive distributions) are sent along

the arrows from a parent to a child, and λ-messages (likelihood functions) travel against

the arrows from a child to a parent.

A node is called an evidence node if the variable associated with the node has a

known value, for example, a sensor reading or known status. The set of all evidence

nodes in a belief network is called the evidence of the belief network, and conventionally

denoted by a boldface e. It is convenient to divide the evidence e into subsets according

to its placement in the belief network relative to a typical node X. Let us imagine for a

moment that we have removed X from the belief network, so that several disconnected

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 81

B

A

Figure 5.2: An example of a belief network which is not a polytree.

X

U1

U2

U3
U4

Y1
Y2

Y3

Figure 5.3: A typical node X in a polytree belief network. U1, U2, U3, and U4 are parents

of X, and Y1, Y2, and Y3 are children of X.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 82

X

U

Y

πU,X

πX,Y

λX,U

λY,X

Figure 5.4: Messages associated with a typical node X. π-messages travel from parents

to children, and λ-messages travel from children to parents.

subnetworks (one for each parent and each child) remain. The union of the subnetworks

connected to parents is called the upstream part of the belief network (relative to X),

while the union of the subnetworks connected to the children is called the downstream

part of belief network. Now let us examine the evidence from the point of view of X, as

shown in Figure 5.5. The set of all evidence in Figure 5.5 is e = {A,B, E, Y1, G, H}. The

evidence upstream from X is denoted e+
X = {A,B, E}, and the evidence downstream

is e−X = {Y1, G, H}. The upstream evidence may further be divided according to which

parent subtree contains the evidence: in the example, we have e+
X,U1

= {A,B} and

e+
X,U2

= {E}. Likewise, the downstream evidence may be divided into e−X,Y1
= {Y1}

and e−X,Y2
= {G,H}.

We are now prepared to discuss the inference algorithm, called the polytree algo-

rithm, which riso uses.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 83

X

U1 U2

B

C
D

E

F

Y1
Y2

G
H

A

Figure 5.5: Evidence in a belief network, from the point of view of a typical node X.

5.3 The polytree inference algorithm

The polytree algorithm for computing the posterior of any variable in a belief network

without loops exploits the fact that each variable X d-separates the network into two

disjoint parts, one upstream from X and one downstream. The computation of the

distribution of X given all the evidence e in the network, pX|e, is expressed in terms

of predictive messages πU,X which are passed down from each parent U of X, and

likelihood messages λY,X which are passed up from each child Y of X. These messages

are combined to yield the predictive support πX , and the likelihood support λX , and the

posterior for X is just the normalized product of πX and λX . The polytree algorithm

computes the posterior of one variable at a time, by computing the predictive and

likelihood support for that variable, and computing any messages needed. So long as

the evidence variables in the network do not change, the same messages may be re-used

to compute the posterior distributions for other variables as well.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 84

The polytree algorithm is defined in terms of π’s and λ’s as follows.2 Denote the

distribution of X given its parents U1, . . . , Um as qX . That is, qX is a shorthand for

pX|U1,...,Um
. Let e be the set of all evidence variables within the network, with e+

X

denoting all the evidence above X in the polytree and e−X denoting all the evidence

below X in the polytree. Also, let e+
X,U denote the evidence above X which is also

above its parent U , and let e−X,Y denote the evidence below X which is also below its

child Y . The backslash denotes set difference, e.g. e1\e2 represents the set obtained

by removing elements of e2 from e1. Then the π and λ functions are defined in terms

of probabilities involving X, the parents and children of X, and the evidence in the

network. There are five important equations in the polytree algorithm, as derived, for

example, in Ref. [29].

1. Posterior for variable X:

pX|e(x) ∝ πX(x) λX(x) (5.1)

2. Predictive support for X:

πX(x) = pX|e+
X

(x)

=
∫

du1 · · ·
∫

dum qX(x, u1, . . . , um) πU1,X(u1) · · · πUm,X(um) (5.2)

3. Likelihood support for X:

λX(x) ∝ pe−X |X(x) =
n∏

j=1

λYj ,X(x) (5.3)

4. Predictive message sent to child Yk:

πX,Yk
(x) = pX|e\e−X,Y

(x) ∝ πX(x)
n∏

j=1

j 6=k

λYj ,X(x) (5.4)

2 A particularly clear exposition of the polytree algorithm was given in Ref. [29].

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 85

5. Likelihood message sent to parent Uk:

λX,Uk
(uk) = pe\e+

X,Uk
|Uk

(uk)

∝
∫

dx

∫
du1 · · ·

∫
duk−1

∫
duk+1 · · ·

∫
dum

λX(x) qX(x, u1, . . . , um)
m∏

j=1

j 6=k

πUj ,X(uj) (5.5)

Note that since a likelihood function is not a probability density, it need not be

normalized to 1; a likelihood function may integrate to any positive number, or, indeed,

it need not be integrable at all. Any positive multiple of a likelihood function is again a

likelihood function; likelihood functions are unique only up to a positive constant factor.

For this reason, expressions involving likelihood functions are given as porportionalities

instead of equalities in Eqs. 5.1 through 5.5; the constants of proportionality for Eqs. 5.1,

5.2, and 5.4 are simply those numbers which make the left-hand sides integrate to 1.

The constants of proportionality for Eqs. 5.3 and 5.5 are arbitrary; it is sometimes

convenient to make the likelihood function integrate to 1. However, for some purposes,

the normalization of likelihood functions does matter, and incorrect results obtain if the

constants of proportionality are ignored. This problem arises in the computation of π’s

and λ’s when the distributions involved are mixtures; this point is discussed at greater

length in §5.3.1.

For some combinations of types of functions, the result can be computed symbol-

ically. Otherwise, an approximate result must be computed. A general scheme for

computing such approximations is presented in §5.5. However, symbolic results can be

obtained for a wider range of distributions than the ones mentioned already (discrete,

conditional Gaussian, mixtures of conditional Gaussian). A catalog of the π and λ

computations which can be carried out exactly, or with a close approximation, is listed

in Appendix C. The catalog is useful even if not all the functions of interest (πX , λX ,

etc.) can be computed exactly; if some result can indeed be computed exactly, let us

do so, and postpone approximations until they are finally necessary.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 86

5.3.1 π’s and λ’s for mixture distributions

Mixture distributions, especially Gaussian mixture distributions, are very useful for

constructing belief networks, since a mixture with enough components can approximate

any smooth density. Within riso, mixtures are computed as approximations to π and

λ messages, as described in the next section. Mixtures may also arise when integrating

over a discrete variable which has a continuous child — generally speaking, the mixture

contains one component for each possible value of the discrete parent. For these rea-

sons, mixture distributions will appear frequently in inference computations, and it is

worthwhile to consider how the presence of mixtures affects the computation of π and

λ functions.

It is easy to show that computing a π or λ function from mixture distributions

will yield mixture of π or λ functions from each combination of single components.

From Eqs. 5.1 through 5.5 we see that the quantities of interest are either products of

distributions, or integrals of products of distributions. So let us focus on a product of

mixture distributions. (If there is a distribution which is not a mixture, it can always be

considered a mixture with a single component.) Let p1, . . . , pn be mixture distributions,

each of which has some mixing parameters αkl and component distributions pkl. The

density of each distribution is given by

pk(x) =
Nk∑

l=1

αkl pkl(x) (5.6)

Then the product of these distributions is

n∏

k=1

pk(x) =
n∏

k=1

Nk∑

l=1

αkl pkl(x)

=
N1∑

l1=1

· · ·
Nn∑

ln=1

n∏

k=1

αk,lk pk,lk(x) (5.7)

This shows that the result is again a mixture, with the number of components equal to

the product N1 · · ·Nn of the numbers of components of each multiplicand, and mixing

parameters equal to products α1,l1 · · ·αn,ln of the mixing parameters of the multipli-

cands.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 87

5.4 Implementation of the inference algorithm

The polytree algorithm lends itself well to the following “lazy” or “just in time” com-

putational scheme:

To compute the posterior for X (or to compute πX , or λX , or a predictive or
likelihood message), compute only those functions which are required, then use
those functions to compute the quantity of interest.

Probability distributions are represented within riso as classes in the Java programming

language. To compute the posterior (or πX , etc.), the inference code first computes any

necessary partial results, such as incoming messages. Then the inference code uses

the types of the partial results to search the local filesystem for a helper class which

contains a function to compute the quantity of interest. The helper classes are grouped

together into “packages” according to their purpose: all classes to compute a posterior

distribution will be found in the package computes posterior, classes to compute πX

will be found in computes pi, and so on for classes to compute λX , etc.

For example, if the posterior is to be computed and πX is represented by an object of

class A and λX is represented by an object of class B, then the inference code attempts

to find a helper class in the computes posterior package which accepts arguments of

types A and B. If no such helper exists, the inference code attempts to locate a class

which accepts arguments of types S and T , where S is A or a superclass of A, and T is

B or a superclass of B. This scheme makes it possible to construct code which handles

both special cases (for the subclasses) or handles general cases (for the superclasses).

All classes which represent a conditional probability distribution are subclasses of

an abstract class which represents a conditional distribution, and all that represent

unconditional distributions are subclasses of an abstract class which represents an un-

conditional distribution. If an exact symbolic result is known for a π- or λ-message

or some other required function, that result will be computed by a helper class named

by the subclasses. Otherwise, we fall back on a helper class named according to the

superclasses. The approximation scheme described in this document is implemented by

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 88

helpers for the abstract base classes; exact results are implemented by subclass helpers.

A list of the special cases which riso can detect is tabulated in Appendix C. An

approach for computing approximate results is described in the next section.

Since each type of distribution and each type of helper is represented by a different

class, new types can be added without requiring modification of existing type definitions,

and, above all, without requiring modification of the inference algorithm. This allows

one to create the types suitable for particular applications, as described, for example,

in Chapters 6, 7, and 8.

5.5 Approximating π’s on the fly

To construct an approximation for πX or a π-message, riso minimizes the cross-entropy

between the target (the distribution to be approximated) and a Gaussian mixture. The

cross-entropy calculation is just

Hp,q(θ) = −
∫

p(x) log q(x|θ) dx (5.8)

denoting a target density as p and its Gaussian mixture approximation as q; the pa-

rameters of the approximation are denoted θ. The cross-entropy can be considered the

continuous analog of the negative log-likelihood which appears in approximation prob-

lems based on measured data. Values of p(x) are computing by directly evaluating the

appropriate equation — in the case of πX and λX,Uk
, this requires numerical evaluation

of integrals. Evaluating the cross-entropy itself also requires a numerical integration.

Likelihoods are not targets because they need not be normalized nor normalizeable,

and so there may be no well-defined approximation. Posterior distributions are approx-

imated by monotone cubic splines, as described in §5.7 and Appendix D. It is much

faster to fit a spline than to compute a mixture approximation, but splines are unwieldy

in calculations. Since a posterior distribution is a final result in the polytree algorithm,

it need not have a form which is convenient for further computations. Spline approxi-

mations are also computed for certain πX , namely distributions of sums and products,

as described in §C.3.17.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 89

The cross-entropy for the mixture approximation problem is minimized by an

expectation-maximization (EM) algorithm, also employed by Poland [67]; the follow-

ing discussion of convergence of the algorithm is based on Wu [84]. EM algorithms

are usually described in terms of discrete data, but the development can be extended

readily to the approximation of a continuous function. Let x denote the variable or

variables on which the target p and its approximation q are defined, and let y denote

the “unobserved” variable or variables; in the mixture estimation problem, the mixture

selector is the unobserved variable. Consider the expectation of the logarithm of the

joint distribution of x and y under the approximation model with respect to possible

instantiations of the unobserved variable,

Q(θ, θ′) =
∫

p(x)
∫

q(y|x, θ′) log q(x, y|θ) dy dx

= −Hq,q(θ, θ′)−Hp,q(θ) (5.9)

writing the cross-entropy of q(y|x, θ′) and q(y|x, θ) as

Hq,q(θ, θ′) = −
∫

p(x)
∫

q(y|x, θ′) log q(y|x, θ) dy dx (5.10)

Thus Q is related to the cross-entropy as

Hp,q(θ) = −Hq,q(θ, θ′)−Q(θ, θ′) (5.11)

Applying Gibbs’ inequality to
∫

q(y|x, θ′) log
q(y|x, θ′)
q(y|x, θ)

dy (5.12)

we find

Hq,q(θ′, θ′) ≤ Hq,q(θ, θ′) (5.13)

Let us suppose we have some initial value for the parameters, denoted θ′. The EM

algorithm can be stated as these two steps:

• E step: Compute Q(θ, θ′).

• M step: Maximize Q over θ and assign the result to θ′.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 90

These two steps are repeated until θ′ seems not to change much, or Q seems not to

change much, or we run out of patience. Each two-step iteration decreases the cross-

entropy Hp,q: suppose we have found θ such that Q(θ, θ′) > Q(θ′, θ′). Then from

Eqs. 5.11 and 5.13 we find

Hp,q(θ) < −Hq,q(θ′, θ′)−Q(θ′, θ′)

= Hp,q(θ′) (5.14)

If, in a sequence of parameter updates we consider θ′ to be a previous value and θ

to be new value, the EM algorithm decreases the cross-entropy Hp,q. If the entropy

of the target exists, the cross-entropy must have a point of accumulation, since the

cross-entropy decreases with EM iterations and is bounded below by the entropy of

the target distribution p.3 It does not necessarily follow that the parameters θ likewise

converge, although if the cross-entropy is unchanged, whether the parameters converge

is inconsequential in the function approximation problem.

The EM algorithm is applied to the mixture approximation problem as follows. Let

i denote the component selector; the number of components is m. The parameters are

θ = (α1, . . . , αm, µ1, . . . , µm, σ1, . . . , σm). The joint distribution of x and i is

q(x, i|θ) = αi g(x; µi, σi) (5.15)

Denote the mixture approximation as

q(x|θ) =
m∑

i=1

αi g(x; µi, σi) (5.16)

with g being the Gaussian density function, g(x; µ, σ) = exp(−(x−µ)2/(2σ2))/(σ
√

2π).

With these definitions, we have

Q(θ, θ′) =
∫

p(x)
m∑

i=1

q(x, i|θ′)
q(x|θ′) log q(x, i|θ) dx (5.17)

3 However, there exist proper distributions for which the entropy does not exist, such as p(x) =

x−1(log x)−2 for x > e. It is not clear how large a class of distributions this is.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 91

=
m∑

i=1

∫
p(x)

α′i g(x; µ′i, σ
′
i)

q(x|θ′) log αi dx

+
m∑

i=1

∫
p(x)

α′i g(x; µ′i, σ
′
i)

q(x|θ′) log g(x; µi, σi) dx (5.18)

To maximize Q over the αi, we need consider only the first term in Eq. 5.18. Let us

define the “integrated responsibility” as

IRi(θ) =
∫

p(x)
αi g(x; µi, σi)

q(x|θ) dx (5.19)

Applying Gibbs’ inequality again, we see that
m∑

i=1

∫
p(x)

α′i g(x; µ′i, σ
′
i)

q(x|θ′) log αi dx ≤
m∑

i=1

IRi(θ′) log IRi(θ′) (5.20)

thus to maximize Q we choose

αi ← IRi(θ′) (5.21)

As for the other parameters µi and σi, we seek a stationary point of the second term in

Eq. 5.18. Computing the gradient with respect to the µi and σi and setting the gradient

to zero, we obtain

µi ← 1
IRi(θ′)

∫
x p(x)

α′i g(x; µ′i, σ
′
i)

q(x|θ′) dx (5.22)

σ2
i ←

1
IRi(θ′)

∫
(x− µ′i)

2 p(x)
α′i g(x; µ′i, σ

′
i)

q(x|θ′) dx (5.23)

In general, one should consider a maximum of Q at the boundaries of the parameter

space as well as any stationary points within the parameter space. Since the µi may take

on any real value, the only boundary to worry about is σi = 0. If the target density p is

smooth, none of the components of the mixture approximation will have zero variance

and we can safely ignore the boundary. On the other hand, if the target density has

nonzero mass at some points (for example, if it is a mixture of discrete and smooth

densities) then Q will reach a maximum for some σi = 0; the required derivatives do

not all exist, and the assignment in Eq. 5.23 is not applicable. In this case, it seems the

best course of action will be to place zero-width components at the points supporting

discrete masses, and carry out the EM algorithm on the smooth density which remains.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 92

Since over the course of several iterations of the cross-entropy minimization algo-

rithm the target function will be evaluated repeatedly at the same or nearly the same

argument, we can speed up the calculations by cacheing values of the target function.

The cacheing algorithm employed by riso is based on a self-balancing binary tree called

a “top-down splay tree” [75]. Each node in the splay tree stores a key x and its associ-

ated function value f(x); the nodes are ordered by increasing values of x. When a value

of f(x) is needed, the splay tree is searched for x. If x is contained in some node, the

associated f(x) is returned. Otherwise, if x is between two nearby values, the values

associated with the neighbors are interpolated and the result is returned. Otherwise x

is less than the least key in the tree or greater than the greatest key, or the neighbors

of x are too far away; the value of f(x) is computed, stored in the tree with key x, and

returned.

On the average, searching a top-down splay tree requires a number of operations

proportional to the logarithm of the number of keys in the tree. These operations

are relatively fast, such as dereferencing memory addresses and comparing numbers.

Since the target function may be defined in terms of numerical integrations which are

relatively time-consuming, using a splay tree as a cache can yield a significant speed-up.

In this scheme which computes approximations to explicitly computed target func-

tions, there is substantial bookkeeping. Target functions are constructed by keeping

references to the necessary components functions (π- or λ-messages and the conditional

distribution for a given variable), and then evaluating the components (integrating them

if necessary) when an output of the target function is needed.

It has proven useful to compute a summation over a discrete variable as a special

case of the numerical integration code, so in order to compute a multiple integral it

is necessary to know whether each variable is discrete or continuous. Also, it is very

useful to “skip over” a variable in a multiple integration, that is, to assign the variable

a certain value, and to not integrate over that variable. If a variable is an evidence

variable, or if it is an argument to the integral (as is the parent variable to which we

send a λ-message), then we skip over the integration of that variable.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 93

5.6 Numerical subtleties of cross-entropy calculations

Finding the “effective support.” To make numerical integrations easier, riso tries to

make the region over which we integrate as small as possible. Let us refer to a region

which contains at least a mass 1− ε, for a small number ε, as an “effective support” of

the integrand. Note that a region which contains a mass 1−ε is not unique; riso makes

an effort to find the smallest effective support. It is important to obtain a small effective

support because numerical integrations may fail if the integrand varies on scales that

are much larger or much smaller than the region over which the integration is carried

out. Also, to initialize a Gaussian mixture approximation (as described below), riso

attempts to find peaks in the target distribution over the effective support, and this

search is more efficient when the effective support is as small as possible.

Integration algorithm. Numerical integrations in more than one dimensions are difficult.

In the current implementation of riso, multidimensional integrations are computed by

a quasi Monte Carlo (QMC) algorithm. Such an algorithm is much like an ordinary

Monte Carlo integration in that the estimate of an integral is taken as

∫
f(x) dx ≈ 1

N

N∑

k=1

f(xk)

where the (xk) are a sequence of points. However, in a QMC algorithm the sequence

is constructed to be more uniform and more regular than an ordinary pseudo-random

number sequence, and for this reason QMC algorithms are often called methods of low

discrepency. If the number of dimensions of the integration is not too high, QMC

often yields a more accurate estimate for the same number N of function evaluations,

compared to ordinary Monte Carlo. See Ref. [58] for a comprehensive treatment of QMC

algorithms. TOMS algorithm 659 [9] was used to generate low-discrepency sequences

used in QMC integrations; source code for algorithm 659 is available at www.netlib.-

org.

One-dimensional integrations are carried out by an adaptive region-splitting algo-

rithm based on a Gauss-Kronrod 21-point rule. (The code is a translation of the QAGS

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 94

algorithm from quadpack, a collection of quadrature algorithms available from www.-

netlib.org.) The adaptive quadrature algorithm can be “fooled” if the integrand varies

on a scale much smaller than I/42, where I is the length of the interval of integration.

For this reason, riso tries to find the smallest effective support of the integrand, as

described under the preceding heading.

Initial approximations. Since the EM algorithm yields only a local minimum of the

cross-entropy, the initial approximation should be not too far from correct — otherwise

we might come to a high local minimum of cross-entropy. In particular, it pays to search

for peaks in the target density, and initialize the approximation with corresponding

peaks. riso constructs an initial mixture approximation with a certain number of

components with equal mass and variance, with their centers placed at regularly spaced

intervals; these components are called “pavers,” since they cover the support of the

target like flagstones. Also, a mixture component is allocated for each peak which is

found in the target density, as described in the following paragraphs.

riso implements the following scheme for locating peaks in the target density. A

uniform grid x0, x1 = x0+h, x2 = x0+2h, . . . , xn is placed over the effective support of

the target density. If a point seems to be a local maximum (i.e., if the density is greater

at xi than at xi−1 and xi+1), then a component is added to the initial approximation

mixture with mean equal to xi and standard deviation calculated by fitting a Gaussian

bump to the curvature of the target density. For convenience, translate from xi to 0,

with u = x − xi. Let q0 denote a function proportional to the Gaussian density with

mean 0 and variance σ2. Denote the mass
∫

q0(u) du as α. Then q0 and its first two

derivatives are

q0(u) =
α

σ
√

2π
exp

(
−1

2
u2

σ2

)
(5.24)

q′0(u) = − u

σ2
q0(u) (5.25)

q′′0(u) =
1
σ2

(
u2

σ2
− 1

)
q0(u) (5.26)

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 95

From this it follows that

q′′0(0) = −(1/σ2) q0(0) (5.27)

Now given the curvature of the target density, estimated as

q′′0(0) ≈ p(xi+1)− 2p(xi) + p(xi−1)
h2

(5.28)

we can solve for σ to get an approximate standard deviation:

σ ≈
√
−q0(0)/q′′0(0) (5.29)

The mass of the peak is estimated as

α ≈ p(xi) σ
√

2π (5.30)

The corresponding mixing parameter is set to somewhat more than the estimated mass

of the peak: a mixture component is allocated with its weight proportional to

1
n

+ p(xi) σ
√

2π (5.31)

where n is the number of peaks plus the number of pavers in the initial mixture. A

paver is assigned a weight proportional to 1/n.

Delaying integration of likelihood functions. The likelihood function of a discrete vari-

able has a known domain: the domain is just 0, 1, 2, . . . , #X − 1, where #X is the

number of states of the variable X. So for a discrete variable, riso constructs a table

of probability values and evaluates the likelihood function over its domain, and stores

the results. The table is propagated through further computations.

However, for a continuous variable the likelihood need not be normalizeable, so it

may not have an effective support smaller than all the reals. riso does not integrate

over a likelihood until there is a predictive distribution (which is guaranteed to be

normalized) in the integrand. For this reason approximations are not generated for

a likelihood function of a continuous variable (i.e., λX or a λ-message). Gaussian

mixture approximations are only computed for πX or a π-message of a continuous

variable. This is perhaps too pessimistic; there are examples of likelihood functions of a

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 96

continuous variable which do have bounded support, and which are therefore amenable

to approximation.

Removing “unneeded” components. If an accurate approximation can be constructed

using some number of components, then over iterations of the EM algorithm any ad-

ditional components often become nearly the same (i.e., having the same mean and

variance) as some other component. riso makes an effort to find and remove such re-

dundant components, by comparing the mean and variance of each component against

the mean and variance of every other component. If the means are close enough and

the variances are close enough, the components are redundant: one of them is removed

and its weight is given to the other component. “Close enough” is assessed as follows:

Let r = σ1/σ2, σ2 = 1/(1/σ2
1 + 1/σ2

2), and ∆µ = µ1 − µ2. If ∆µ/σ < β and
|r − 1| < γ, then components 1 and 2 are redundant.

Of course, the numerical factors β and γ can be adjusted to suit one’s tastes; there does

not appear to be a principled means of adjusting these parameters. At present, these

are assigned the values β = 0.25 and γ = 0.2.

If, at the end of an EM iteration, a component has a mass less than some threshold,

it is removed. In the present implementation, the mass threshold is 0.005.

Other heuristics for reducing the number of components in a mixture have been de-

scribed [17, 6]. The application in these papers was to mixtures of discrete distributions,

but the basic ideas should also apply to Gaussian mixtures as well.

Stopping criterion for cross-entropy minimization. It is not yet clear how to determine

when an approximation computed by minimizing cross-entropy is “close enough.” At

present, the approximation algorithm runs for a fixed number of cycles; this yields

acceptable results.

5.7 Constructing monotone spline approximations

So-called monotone cubic splines [33] are useful as approximations to probability density

functions. Such a spline is monotone between two adjacent support points, thus if the

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 97

function to be approximated is nonnegative at all support points, then the spline is

nonnegative as well. As with other cubic splines, it is easy to express derivatives and

antiderivatives of the spline in terms of its coefficients.

A spline approximation to a density function is constructed by evaluating the density

a number of points and then calculating the spline coefficients according to the formulas

given in Appendix D. The total area under the spline is calculated and the coefficients

are scaled so that the spline integrates to unity. After this adjustment, the spline is a

proper density function; this is especially convenient if the density to be approximated

is not normalized, for example, if the density is a posterior distribution expressed as

πX λX , because it is easier to normalize the spline than to normalize the density to be

approximated.

Spline approximations are much simpler and faster to construct than Gaussian mix-

ture approximations, but they have some drawbacks. A spline approximation may be

very verbose, because a large number of support points may be required. In riso, ver-

bose splines are often the output of a numerical convolution (§C.3.17); all the operands

in the convolution must be discretized with the same interval ∆x, which is determined

according to the operand with least variance. In calculations described elsewhere in

this dissertation (e.g., §8.2.4), splines with as many as several thousand support points

were constructed.

A more serious problem than simple verbosity is the present lack of exact results for a

posterior distribution, πX , λX , etc. with spline approximations as the π- or λ-messages.

Some exact results are possible — for example, the convolution of cubic splines is a

higher-order polynomial spline — but it is not clear how useful such results will be.

Integrals of cubic splines will generally contain higher-order polynomial terms, and

these terms, when integrated again in another πX or π-message calculation, will yield

terms of still-higher order; this is bad news. Perhaps any terms of degree greater than 3

could be evaluated at support points to yield a cubic spline which is an approximation

of an exact higher-order result. The good news is that if all terms in a calculation

(posterior, πX , λX , etc.) are piecewise polynomials, then the result is also a piecewise

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 98

polynomial. Polynomial spline representations of conditional distributions have not

been used in belief network computations, to my knowledge, but the construction of

such splines should be straightforward.

5.8 Exploiting parallelism for faster inferences

It is well known that belief network computations can be parallelized in some part.

Making best use of parallel computation is especially important when the “just in

time” approximation algorithm is employed, since computing each π or λ function by

an approximation may be time-consuming. The original description of the polytree

algorithm [63] refers to each node in the network as a separate processor. While com-

putations proceed sequentially on each processor, each processor may be computing a

different partial result necessary for the computation of a posterior distribution.4 The

parallelism exploited by such a system of processors is sometimes referred to as “topo-

logical parallelism.” Other forms of parallelism can be exploited by more sophisticated

inference algorithms [49, 65] to gain greater speed-ups.

riso makes use of topological parallelism in an obvious way. A variable wanting

messages from other variables issues a request for each message, then waits until all the

messages have arrived — thus other processors may compute the messages in parallel. In

at least one case of practical interest, this yields substantial parallelism: in distributed

diagnostic monitoring problems, there may be many networks which represent different

equipment units and which run on separate processors.

5.9 Extending the polytree algorithm

At present, the most important unsolved problem in riso is handling networks which

contain loops. A conditioning algorithm is planned, perhaps using algorithms [87, 27]

to cooperatively detect loops in a distributed environment. However, it is not clear that

4 It is conceivable that a large network might be divided into interconnected sub-networks, and the

resulting pieces farmed out to different processors. Such a scheme is not implemented by riso.

AN INFERENCE ALGORITHM FOR HETEROGENEOUS POLYTREES 99

it will be feasible to carry out conditioning in the presence of hetergeneous distributions

— in particular, conditioning on continuous variables may well be troublesome. A

conditioning algorithm devised for a particular problem is described in §7.2, but it can

handle only one kind of loopy network.

There remain some numerical problems. While convergence of the EM algorithm

is comforting, other algorithms such as the quasi-Newton algorithm might be faster.

Sometimes the EM algorithm finds a local optimum which is clearly inferior; perhaps

several random starting points should be tried, and the least cross-entropy approprox-

imation kept. There is anecdotal evidence to suggest that ordinary Monte Carlo is

superior to quasi Monte Carlo in more than 8 dimensions or so; perhaps riso ought to

switch over to ordinary Monte Carlo in high-dimensional problems. It might also be

profitable to combine exact inferences with Gibbs sampling, in the style of HUGS [46].

Chapter 6

BELIEF NETWORK IDIOMS FOR SENSORS AND SO ON

A belief network for an engineering problem will very often contain variables which

represent measurements of physical quantities. Usually our belief about a measured

variable X will be influenced by the status (correctly functioning or otherwise) of the

sensor which measures X, past values of X, measurements of variables with which X is

correlated, and, of course, measurements of X itself. The dependencies among all these

variables may be modeled by a fairly complex belief network, but several commonly-

encountered structures have been identified, and these structures are described in this

chapter as belief network “idioms” — the well-worn phrases of belief network expres-

sion.1 These stuctures can be used as cookie-cutters or patterns for the construction of

belief networks containing measured variables for particular applications. A library of

such patterns will reduce the time spent on extraneous variables — which might well

be called “nuisance variables” — and speed the development of the application proper.

Although the emphasis in this chapter is on models which are used as parts of larger

networks, sometimes, as in the case of weather variables, a model of a measured variable

may be an end in itself.

In addition to the idioms for measured variables, two models which aren’t particu-

larly concerned with sensors or measurements are also described. One is a model which

can answer the query “is X larger or smaller than expected?” and the other is an “al-

ternative grouping” model. So as not to lose them amid the profusion of sensor models,

these non-sensor models are considered first, in §§ 6.1 and 6.2.

Except for the simple sensor model, which has been described before [57], descrip-

tions of the models discussed in this chapter have not been published before. However,

1 The very appropriate term “idiom” is due to Martin Neil and Norman Fenton.

BELIEF NETWORK IDIOMS FOR SENSORS 101

this is probably due mostly to a lack of interest in the models themselves; the mod-

els have doubtless appeared in applications without any specific attention drawn to

them. This chapter should be considered a convenient catalog, rather than a list of

fundamental results.

The idioms described in this chapter are conveniently implemented as subnetworks

in a distributed belief network. The subnetworks can be constructed and developed

separately from the applications which may use them, and then linked into application

models, via the measured variables, as needed. It might be convenient to allow the user

to specify the name of a pattern and supply a few parameters, and have riso construct

the appropriate subnetwork; however, such a template expansion capability has not yet

been implemented.

6.1 A model for the “strange magnitude” problem

In many engineering problems, there is some variable of interest which has a nominal

value, and we want to know if the actual value of the variable is substantially different

in magnitude from the nominal value. This model is very simple, but may appear

repeatedly in a belief network application.

In this model, Xnom is the nominal or expected value of some variable X, while

Xact is the actual value, and α is a multiplier: if Xnom and α are known, then Xact =

αXnom. The usual problem is to infer α from a more-or-less known value of Xact and

the distribution over Xnom inferred from the upstream evidence e+. (A measurement

model for Xact is omitted in the interest of clarity.) If both the nominal and actual are

known, then α is just the ratio Xact/Xnom, thus the posterior over α is essentially the

computation of the distribution of the ratio. Except when the distributions involved

are lognormal, the ratio will not have any simple form, and an approximation must be

computed.

As a simple example, suppose the upstream evidence is such as to yield pXnom|e+ as

a truncated Gaussian distribution with µ = 120 and σ = 30, truncated to the interval

[0,+∞), and α is given a uniform prior over [0, 4]. Suppose we have Xact = 100. Then

BELIEF NETWORK IDIOMS FOR SENSORS 102

Xnom

Xact

α

e+

Figure 6.1: A model for “strange magnitude.” To be specified: pα (prior belief about the

multiplier) and pXnom (prior over nominal value — may want to make this conditional

on other variables). The conditional distribution pXact|α,Xnom
is always δ(Xact−αXnom).

the posterior for α is skewed to the right, with a mode near 0.79, mean 0.9897, and

standard deviation 0.3759; such a skewed distribution is typical for the distribution of a

ratio. The posterior, shown in Figure 6.2, is computed by riso as a spline approximation

(Appendix D) with about 200 support points.

6.2 Alternative groupings

Some operations, such as summation or logical conjunction or disjunction, yield the

same results no matter what the order of the arguments, and results are easily defined

as the same operation applied to partial results. In some engineering problems, it is

of interest to consider a collection of variables combined into different groups by the

same operation. An example will clarify the idea: we may need to compute the total

energy use of a group of buildings, dividing the buildings according to geographic region

and computing a subtotal for each region, and also dividing the buildings into classes

according to predominate use (residence, retail, school, office, etc.) and computing a

subtotal for each usage class. Or we may be monitoring the buildings for problems in the

HVAC systems, in which case the operation is not summation but disjunction — each

BELIEF NETWORK IDIOMS FOR SENSORS 103

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

alpha

de
ns

ity

Figure 6.2: Posterior for α, with pXnom|e+ a truncated Gaussian distribution (µ =

120, σ = 30), and Xact = 100, as a spline approximation comprising about 200 support

points.

partial result has the form “There is a problem in such-an-such a group of buildings,”

obtained from “Building A has a problem or building B has a problem or”

So long as evidence is not introduced into the variables downstream from
∑

i Xi (or

whatever the operation), the various groupings have no effect on each other, so new

groupings can be introduced as needed without affecting previously computed results.

Operations can be arranged in hierarchies if need be, again without affecting already-

computed results.

As a simple example, suppose that the variables in Figure 6.3 are assigned the

BELIEF NETWORK IDIOMS FOR SENSORS 104

A1 A2 A3 B1 B2 B3

A’s B’s

1’s 2’s 3’s

Figure 6.3: Alternative groupings for a collection of variables. One grouping distin-

guishes variables by letter: all the A’s are in one group and all the B’s in another.

Another group distinguishes variables by index: all the 1’s are together, all the 2’s are

together, and all the 3’s are together.

following distributions:

A1 ∼ N(50, 72) (6.1)

A2 ∼ N(110, 202) (6.2)

A3 ∼ Gamma(8, 2) (6.3)

B1 ∼ Lognormal(2, 1.2) (6.4)

B2 ∼ N(32, 52) (6.5)

B3 ∼ N(14, 172), left-truncated at 11 (6.6)

and suppose further that the nodes “1’s,” “2’s,” and “3’s” are the sums A1+B1, A2+B2,

and A3 + B3, respectively; likewise “A’s” and “B’s” are the sums A1 + A2 + A3 and

B1 + B2 + B2, respectively. riso can tell that the sum A2 + B2 can be computed

exactly as a Gaussian distribution, but the other distributions are computed as spline

approximations, with the support points given by numerical convolutions (as described

in §C.3.17) of the density functions involved. The splines have from 900 to 6600 points

BELIEF NETWORK IDIOMS FOR SENSORS 105

— the wider the support of the distributions involved, the more support points are

allocated; the effective support of the lognormal distribution of B1 is about [0, 1000],

and this forces the use of a large number of points for A1 + B1 and B1 + B2 + B3. In

the interest of brevity, the distributions of the summation variables are not plotted.

As a sanity check, the distributions of “1’s + 2’s + 3’s” and “A’s + B’s” are computed

by riso as identical up to numerical errors, as indeed they should be.

6.3 A simple sensor model

We begin our development of models for measured variables by distinguishing between

the variable in which we are interested, and its measurement. We directly observe only

the measurement, and the variable of interest must be inferred, as when we observe a

thermometer showing “52◦ F” and we infer that the temperature throughout the room

is more or less 52◦ F. The reader will immediately note that several unhappy accidents

can occur: the air in the room is not well mixed, and near the ceiling it is substantially

warmer than below; the observation was made several hours ago; the thermometer is

miscalibrated; the lights are out and it’s too dark to read the thermometer. There

is always a greater or lesser distance, so to speak, between the observation that we

can carry out and the variable we need to know about — the point of modeling the

measurement process is to detect measurement problems, on the one hand, and to work

as best we can with whatever information is available, on the other.

A simple, but useful, model which embodies some of the above considerations is

shown in Figure 6.4. A model of this kind was proposed in Ref. [57], and is commonly

used in many applications. We are interested in the variable X; its measurement is

denoted X̂, and the status of the sensor which measures X is denoted S. Three distri-

butions are specified for this model:

• pX — In the absence of any further information concerning X, pX describes our

beliefs about X. This distribution is commonly a density model of historical

data, or is constructed from prior information about the typical values of X. A

BELIEF NETWORK IDIOMS FOR SENSORS 106

XS

X̂

Figure 6.4: A simple sensor model. To be specified: pS (reliability), pX (long term

distribution), and p bX|S,X
(measurement model).

convenient specification is X ∼ N(µX , σ2
X), where µX and σX take on any

suitable values, but other forms of models such as lognormal, gamma, uniform,

truncated, etc., are possible, and easy to work with in riso.

• pS — This discrete distribution is interpreted as a specification of the reliability

of the sensor. The possible states of S are “correct operation” and one or more

failure modes; let us agree to the convention that S = 0 corresponds to the “correct

operation” state, and S ≥ 1 corresponds to some failure mode. Ordinarily, most

of the mass is on pS(0) and the remainder is split up among the failure modes.

• p bX|S,X
— This distribution describes the dependence of measurements on the

measured variable and the sensor status. In the “correct operation” state, p bX|S,X

is typically a conditional Gaussian of the form X̂ |X ∼ N(X, σ2bX), where σ bX
is identified with the measurement error. If the sensor is not working correctly,

any one of several problems might occur, and each will have a characteristic effect

on X̂. One very common failure mode is an open circuit (e.g., a broken wire)

on a sensor which transduces a physical quantity to a voltage. In this case, the

output of the sensor is reported as a constant value, denoted here X̂0, which is the

result of mapping the zero voltage to a number via the calibration function. It is

worth remarking that in the “open circuit” state, X has no effect on X̂, so the λ-

message from X̂ to X will generally be a mixture which contains a noninformative

BELIEF NETWORK IDIOMS FOR SENSORS 107

component.

Let us illustrate the working of the model with a few queries on an instance of this class

of models. The distributions are specified as follows: let µX = 50, σX = 20, X̂0 = −46,

σ bX = 1, and pS(0) = 0.99. Let p bX|S=0,X
be a conditional Gaussian with mean X and

standard deviation σ bX , and let p bX|S,X
be an unconditional Gaussian with mean X̂0 and

standard deviation σ bX .

The typical use of the model is to compute the posterior marginals p
X| bX and p

S| bX .

When X̂ is well away from X̂0, p
X| bX is very nearly N(X̂, σ2bX), but close to X̂0, p

X| bX
is essentially the same as N(µX , σ2

X), the prior for X. Properly speaking, the posterior

p
X| bX is always a mixture, with one component corresponding to S = 0 and the other

to S = 1, but for most values of X̂ one component or the other has almost all the

mass. However, there is a transition region near X̂0 in which both components have

appreciable mass. For example, at X̂ = −42, we find

p
X| bX(X,−42) = 0.278 g(X;−41.8, 0.999) + 0.722 g(X; µX , σX) (6.7)

for the posterior of the measured variable; for the posterior of the sensor status, we have

pS(0) = 0.278, pS(1) = 0.722 (6.8)

Despite its simplicity, the sensor model shown in Figure 6.4 will find a place in a wide

variety of applications, and the more complex models shown in the following sections

are largely elaborations of the simple sensor model.

An example of the use of the simple sensor model in an application is given in

Figure 8.2, which shows a belief network model for a heating coil. The variables UA,

Cpa, and Cpw are all non-measured variables with fixed values, while Tdb,ent, mw, mair,

Tw, and Tdb,lvg are all measured. Each measured variable is represented by a belief

network of the same name, containing nodes for the actual value, the measured value,

and the sensor status. In the riso belief network description, the list of parents for

Tdb,lvg refers to the measured values by the name of the belief network and the name

BELIEF NETWORK IDIOMS FOR SENSORS 108

of the variable representing the actual value within it: Tdbent.actual, mw.actual,

mair.actual etc. References to two different nodes which are both named “actual”

are disambiguated by the names of the subnetworks containing them, using the naming

scheme described in §5.4. The riso belief network description of Figure 8.2 may be

found at http://civil.colorado.edu/~dodier under the heading, “Example riso

belief networks.”

6.4 A sensor model with temporal dependence

Consider the problem of measuring atmospheric pressure, temperature, or relative hu-

midity. From physical principles, we know that the measured variable at the current

time is correlated with the value at previous times. We also know that the status of

the measuring device also persists through time: if it is malfunctioning, it is unlikely

to spontaneously fix itself. So our belief about the measured variable at the current

time is based not only on the current measurement, but also on measurements made at

past times. Likewise, the current sensor status is also inferred from current and past

measurements.

The influence of the past on the present can be captured in a simple extension of

the sensor model of §6.3. Let us suppose that the measured variable Xt is positively

correlated with its value at the immediately preceding time step, Xt−1, and that the

sensor status St, in the absence of measurements X̂, forms a Markov chain. The tran-

sition matrix for St |St−1 gives high probability to transitions from one state into the

same state, and low probability for other transitions; in particular, the transition from

a malfunctioning state in the “OK” state is very low. This sensor model with tem-

poral dependencies is represented graphically in Figure 6.5. This kind of model has

been called a “factorial hidden Markov model” [34], an “HMM(1,2) model” [76], and a

“dynamic network model” [22].

Let us assign numerical values to the temporal dependency sensor model as follows.

BELIEF NETWORK IDIOMS FOR SENSORS 109

Xt−1

St−1

Xt

St

Xt+1

St+1

X̂t X̂t+1X̂t−1

Figure 6.5: A sensor model which represents temporal dependence of sensor status from

one time-step to the next, likewise the temporal dependence of the measured variable.

To be specified: pSt|St−1
(sensor status transition), pXt|Xt−1

(evolution of measured

variable; typically a decay model), and p bXt|St,Xt
(measurement model).

The transition model for the measured variable is a simple linear correlation model,

Xt = ρXt−1 + ε (6.9)

where ρ is a constant and ε ∼ N(0, σ2
ε). The transition model for the sensor status is a

column-stochastic matrix, shown in Table 6.1. Numerical values for the parameters of

the sensor status transition model are given in Table 6.2.

Table 6.1: A model for sensor status transitions.

From:

“OK” “open circuit” “strange”

“OK” 1− (α10 + α20) α01 α02

To: “open circuit” α10 1− (α01 + α21) α12

“strange” α20 α21 1− (α02 + α12)

BELIEF NETWORK IDIOMS FOR SENSORS 110

Table 6.2: Numerical values for the sensor transition model.

ρ 0.99

σε 1

α10 0.001

α20 0.009

α01 0.0001

α21 0.009

α02 0.009

α12 0.001

The linear correlation model predicts that the uncertainty in Xt grows without

bound as t → ∞. This does not correspond with physical reality: typically the uncer-

tainty grows rapidly for some time, then saturates near the size of the typical range of

the measured variable. For chaotic systems, the long-term uncertainty is described by

the invariant measure, while the short-term rate of growth of uncertainty is described

by local Lyapunov exponents; error models for such systems are described in Ref. [44].

A more realistic transition model for Xt |Xt−1 should take both short-term growth and

long-term saturation into account.

The computation of inferences for the temporal sensor model cannot be handled by

the polytree algorithm alone, since the graph shown in Figure 6.5 contains loops. The

loops are broken by instantiating the sensor status variables St and carrying out the

polytree algorithm for each instantiation of the St; this is an example of the conditioning

algorithm mentioned in §7.2. Although conceptually simple, the conditioning algorithm

for the temporal sensor model requires computation time which grows like 3N where N

is the number of time steps. As mentioned in §5.9, more sophisticated algorithms for

inference in heterogeneous belief networks are under investigation.

BELIEF NETWORK IDIOMS FOR SENSORS 111

S1

X̂2

S2

X̂3

S3

X

X̂1

Figure 6.6: A model of redundant sensors measuring the same variable. X is the

measured variable, and X̂1, X̂2, and X̂3 are three measurements of X. To be specified:

pSk
(reliability of each sensor), pX (long term distribution of measured variable), and

p bXk|Sk,X
(measurement model).

6.5 A model of redundant sensors

It is sometimes possible to install multiple sensors which all measure the same variable.

In this case, each estimate serves to reduce the uncertainty of the measured variable,

and we can check each sensor for consistency with the others to help detect sensor

problems. A model of redundant sensors is shown in Figure 6.6. This model is similar

to the simple sensor model shown in Figure 6.4, with more than one measurement. The

conditional distributions of the measurements, p bXk|Sk,X
, k = 1, 2, 3, . . ., need not be

the same, and in an application it may be desirable to make measurements based on

different physical principals so as to better cancel out the idiosyncrasies of each sensor.

With redundant sensors, it becomes possible to distinguish between a sensor which has

failed in an obvious way (e.g., failed with an open circuit) and a sensor which is only

giving a measurement which is “strange” compared to the other sensors. For example,

if the measurement error is about 1◦ F, then any measurement which is more than 3

or 4 ◦ F away from the others is apparently unreliable. Sensors can effectively “vote”

BELIEF NETWORK IDIOMS FOR SENSORS 112

against outliers, with the posterior over the measured variable being dominated by the

largest group of more-or-less consonant measurements. Let us consider a specific model

which displays these qualitative characteristics.

For simplicity, let us assume all sensors are identical: the reliability is the same for

all, and the measurement model is the same for all. As ever, the numbers specified in

the following can be modified to better suit a particular application — the important

thing is the structure, and we can adjust the numbers to suit our tastes.

• pSk
— Let us assign S = 0 to the “sensor OK” state, S = 1 to the “open

circuit” state, and S = 2 to the “strange measurement” state. Let us take pSk
=

[0.990, 0.001, 0.009] for all sensors. That is, the sensor is usually working correctly,

and if it’s not, “strange” values are nine times as common as open circuits.

• p bXk|Sk,X
— Let us take the distribution of the measurement X̂k given its parents

Sk and X to be the same as the distribution of X̂ specified in §6.3. Let us also

take p bXk|Sk=2,X
to be a Gaussian distribution with a very wide variance, say 2σX .

In summary, we have

X̂k |Sk = 0, X ∼ N(X,σ2bX) (6.10)

X̂k |Sk = 1, X ∼ N(−46, σ2bX) (6.11)

X̂k |Sk = 2, X ∼ N(µX , 22σ2
X) (6.12)

• pX — Let us take the distribution of the measured variable the same as in §6.3,

namely X ∼ N(µX , σX).

Here are a few typical inferences computed from a model of three redundant sensors.

All sensors more or less agree. Suppose we have the measurements e = {X̂1 = 23, X̂2 =

24, X̂3 = 25}. Then riso computes the posterior pX|e as a Gaussian with mean 24.02

and standard deviation 0.5771. Note that the posterior is very nearly a Gaussian with

mean (23+24+25)/3 and standard deviation 1/
√

3; the difference is due to the influence

of the prior pX .

BELIEF NETWORK IDIOMS FOR SENSORS 113

One sensor apparently has an open circuit. Suppose we have the measurements e =

{X̂1 = 23, X̂2 = 24, X̂3 = −45.8}. Now riso computes the posterior pX|e as a Gaussian

with mean 23.53 and standard deviation 0.7067. This posterior is very nearly a Gaussian

with mean (23+24)/2 and standard deviation 1/
√

2. That is, the apparently erroneous

reading X̂3 has been effectively excluded from the posterior computation. Examining

the posterior of S3, we see that most of the mass (0.9871) is placed on the “open circuit”

state, while a little bit (0.01287) is on the “strange measurement” state. (Although the

measurement is very close to the open circuit value, it is also well within the range of

“strange” readings.)

Two sensors vote against the third. Suppose we have the measurements e = {X̂1 =

23, X̂2 = 24, X̂3 = 12}. In isolation, each of the three seems reasonable, since they are

all well within the prior range of X and none is close to the open circuit value −46.

However, X̂3 doesn’t agree well with the other two. In this case, riso again excludes

X̂3 from the posterior, which again is very nearly Gaussian with mean (23 + 24)/2 and

standard deviation 1/
√

2. However, if we examine the posterior for S3, this time we

find all of the mass is on the “strange measurement” state.

The sensors all disagree. Suppose we have the measurements e = {X̂1 = 10, X̂2 =

24, X̂3 = 35}. Now the posterior is a Gaussian mixture of three components, each one

corresponding to a measured value. Each status variable has almost all its mass on the

“strange measurement” state.

Thus a belief network model of redundant sensors automatically gives us outlier

detection and excludes apparently abnormal measurements from our beliefs about the

measured variable. We needn’t try to formulate rules for the combination or exclusion of

measurements; these are determined automatically, according to the laws of probability,

from the specification of each sensor.

BELIEF NETWORK IDIOMS FOR SENSORS 114

6.6 Modeling a predictable measured variable

In some problems, we may be able to model a measured variable X which is to some

degree predictable from the time of day, day of the week, or day of the year. For

example, outdoor temperature is a variable of this kind. There are two sources of

information about X: the time prediction, which supplies a π-message, and the sensor

measurement, which supplies a λ-message. As usual, the posterior over X will just be

the product of the π- and λ-messages; if the sensor is working correctly, the variance

of the λ-message will be smaller, and it will dominate the posterior. Otherwise, the

π-message will dominate the posterior. This model provides an automatic, gradual

trade-off between the relative accuracies of each source of information about X.

The measurement model can be constructed without reference to the prediction

model, and one might use the simple model described in §6.3.

The prediction model is typically a regression model of the form pε(X −F (t)). The

regression function F will often be a harmonic function such as A sinωt+B cosωt, with

ω = 2π/(24 h) or ω = 2π/(365 d). One can employ as many frequencies as one likes,

of course. The function F may also be a look-up table containing one entry for each

hour in the day or each day in the year. Both harmonic functions and look-up tables

are easily constructed from empirical data.

A prior pt is formally required, but it will not enter the calculations unless there is

no clock reading. If the clock is unreliable, it may be necessary to introduce a more

complicated model for t, but in most applications there will always be an accurate time

measurement. Typically pt can be taken as a uniform distribution over [0, 24) hours.

A model for outdoor dry-bulb temperature T was constructed from some data for a

BELIEF NETWORK IDIOMS FOR SENSORS 115

XS

t

X̂

Figure 6.7: A measured variable which can be predicted by time (of day, of week, of year,

etc.). To be specified: pt (typically uniform over [0, 24) hours), pS (sensor reliability),

pX|t (prediction model), and p bX|S,X
(measurement model).

site in Wisconsin. A regression of T on daily and yearly frequencies yields

pT |t(T, t) = pε(T − F (t)), (6.13)

pε(u) = g(u; 0, σε), with σε = 9.521, (6.14)

F (t) = 49.82− 3.629 cos
2πt

24 h
− 2.978 sin

2πt

24 h

−20.00 cos
2πt

8760 h
− 8.452 sin

2πt

8760 h
(6.15)

Let us assume the now-familiar the sensor reliability and measurement models from

§6.3. Suppose we have a measurement taken just after midnight on July 2: e = {t =

4369 h, T̂ = 55◦ F}. riso reports the posterior for T as

T | e ∼ N(55.11, 0.99452) (6.16)

We can see what the prediction alone says about temperature by omitting the observa-

tion, so e = {t = 4369}. Then

T | e ∼ N(65.47, 9.5202) (6.17)

so the predicted temperature is somewhat greater than the observed; for this reason

the posterior over T , taking the observation into account, is a little greater than the

BELIEF NETWORK IDIOMS FOR SENSORS 116

SX

Y

X

SY
X̂

Ŷ

Figure 6.8: Measurement of related variables. A measurement of X also provides in-

formation about Y , and vice versa. To be specified: pSX
, pSY

(reliability of each

sensor), pX (long term distribution of X), pY |X (relation between X and Y), and

p bX|SX ,X
, pbY |SY ,Y

(measurement models).

observed value. However, the effect isn’t much since the variance of the prediction is

about 100 times greater than that of the observation. If there is an observation, but it

is erroneous, e.g. e = {t = 4369 h, T̂ = −46.3◦ F}, the posterior for T is the same as if

the observation were missing:

T | e ∼ N(65.47, 9.5202) (6.18)

Thus this model of a predictable variable is much like the simple sensor model of §6.3,

but whereas the simple model has a fixed prior, the prediction yields a sharper posterior

for the variable of interest in the absence of a reliable sensor reading.

6.7 A model of correlated measured variables

It is often the case that measured variables may be correlated to a greater or lesser ex-

tent; in engineering contexts this is often due to thermodynamic relations or unmodeled

common influences. We can exploit the relation between two or more measured vari-

ables to reinforce beliefs about each one, if the sensors are working, and to substitute,

in effect, an estimated value when a sensor is not working.

BELIEF NETWORK IDIOMS FOR SENSORS 117

Let us consider a simple form of a “correlated variables” model with two measured

variables, X and Y , as shown in Figure 6.8. There are measurements of each variable,

which reinforce each other through the relation pY |X of X and Y . There are six distri-

butions to be specified in this model, most of which are now familiar from §§6.3–6.6.

• pSX
, pSY

— As before, these are sensor reliability descriptions.

• p bX|SX ,X
, pbY |SY ,Y

— These are measurement models.

• pX — Description of prior beliefs about X.

• pY |X — This distribution describes the relation between X and Y . This can take

any convenient form; conditional Gaussian and regression models will be suitable

for many problems. The relation may be established from empirical data or from

first principles, or both.

As an example, consider a model which combines measurements of temperature T and

relative humidity RH with a model of the relation between T and RH. A conditional

Gaussian model for RH |T was constructed from TMY2 data (shown in Figure 6.9)

for Denver, Colorado. Some of the parameters for pRH|T are shown in Table 6.3; the

complete description, which is a little verbose, may be found on the riso web site,

http://civil.colorado.edu/~dodier. The RH |T model is a conditional distribution

derived from a joint distribution of T and RH, which was fit by the expectation–

maximization algorithm; see E for details on the calculation of conditional Gaussian

distributions. The T–RH belief network also contains a sensor measurement and sensor

status variable for T , likewise for RH. Here are the results of a few example calculations.

T̂ = 60, no RH measurement. The T–RH model provides, in effect, a substituted value

for RH when a direct measurement is missing. riso computes the posterior as a bimodal

mixture of Gaussians distribution, as shown in Figure 6.10. The peaks near 30◦ F and

61◦ F appear in the empirical data from which the conditional mixture was constructed;

they may be due to different physical processes governing the relation between T and

BELIEF NETWORK IDIOMS FOR SENSORS 118

−20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Temperature, F

R
el

at
iv

e
hu

m
id

ity

Figure 6.9: Temperature (horizontal axis) and relative humidity (vertical) data for

Denver, Colorado, from the TMY2 database; 8760 points.

k ak bk σ2
k

1 -0.5657 64.23 81.50

2 -1.704 129.2 133.1

3 -1.455 146.4 72.01

4 0.02897 71.61 171.3

Table 6.3: Parameters for the conditional distribution RH |T . The form of each com-

ponent is pRH|T (RH, T, k) = g(RH; ak T +bk, σ
2
k); additional parameters for computing

the mixing coefficients are omitted, but may be found in the riso description file.

BELIEF NETWORK IDIOMS FOR SENSORS 119

−40 −20 0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

Figure 6.10: Posterior for RH given T̂ = 60. The posterior is computed as a Gaussian

mixture with eight components.

RH (say high and low pressure weather systems), or they may simply be artifacts of

the particular data set.

T̂ = 10, no RH measurement. A glance at Figure 6.9 shows that the cross-section of RH

is narrowest at relatively low and high temperatures; as expected, the dispersion of the

posterior for RH | T̂ = 10 is substantially less than in the previous case, RH | T̂ = 60.

riso reports the posterior as a mixture of Gaussians; the posterior is unimodal, with

mean 71.29 and standard deviation 14.84, and only slightly non-Gaussian. The mixture

of conditional Gaussians has the very attractive capability of modeling variables for

which the shape of the conditional distribution varies over the range of the parent

variable, a so-called “heteroskedastic” model.

T̂ = −45.3, R̂H = 80. In this case, there is a temperature measurement, but it is

apparently spurious. riso computes a spline approximation to the posterior T | R̂H,

shown in Figure 6.11. The posterior of T is inferred largely from the measurement of

RH (the prior of T has a slight effect); although the model of the relation RH |T is

BELIEF NETWORK IDIOMS FOR SENSORS 120

−50 0 50 100 150
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 6.11: Spline approximation to the posterior T | T̂ = −45.3, R̂H = 80. The spline

comprises 300 support points.

expressed with RH on the downstream side, information propagates upward from R̂H

in the form of a λ-message.

6.8 Learning a predictive sensor model

From the extended logic point of view, there is nothing essentially different about pa-

rameters as opposed to measured variables or hypothesis variables in a belief network,

since all kinds of uncertainty are handled by the laws of probability. We can profitably

represent as a belief network a problem in which the parameters of a prediction model

appear as variables; then we can incorporate prior information about the parameters,

update beliefs about the parameters with incoming data, and propagate uncertainty

about the parameters into the predictions we make. Such a model is an example of a

“belief network for learning;” see Ref. [11] for an excellent introduction.

An example of a model which shows these qualitative features in shown in Fig-

ure 6.12. This belief network represents a prediction model with autoregressive noise;

the “prediction” part is the model which propagates upstream evidence e+ into X, and

BELIEF NETWORK IDIOMS FOR SENSORS 121

a

x1 x2 x3 x4

e+
1 e+

2 e+
3 e+

4

e−2 e−3 e−4e−1

Figure 6.12: Learning a predictive sensor model with autoregressive noise.

the “autoregressive” part describes how information X from one time step can sharpen

beliefs about X at the next time step. The transition from Xt to Xt+1 is modeled as

Xt+1 |Xt ∼ N(ρX, σε) (6.19)

which is equivalent to an AR(1) model with correlation coefficient ρ and additive noise

magnitude σε. The parameters ρ and σε, and any other parameters for the transition

model, may be considered components of α in the diagram, so α is a multi-dimensional

variable. The prediction model pXt|e+
t

may take any convenient form, for example, a

mixture of conditional Gaussians, a look-up table, or a sum of squashing functions. To

complete the belief network, additional downstream evidence e− enters the model; such

evidence often represents sensor measurements.

A belief network of the form shown in Figure 6.12 has been constructed, but detailed

results are not yet available. See also §9.1 for a discussion of a related class of models.

Chapter 7

APPLICATION: SELECTING RATES TO MINIMIZE ENERGY

AND DEMAND COSTS

At present, most electricity users have one electricity supplier, which is determined

by geography, and their energy and demand schedules are selected perhaps once a year

and not changed otherwise. However, under a scheme known as “retail wheeling,” there

are several suppliers which all share the same distribution lines, and users may select

from any supplier. Thus the customer may select from several rate schedules, which

give different trade-offs between energy and demand costs; each supplier generally tries

to encourage users, through its rate schedule, to use electricity in such a way as to

minimize the supplier’s total capital and operating costs. (For example, a supplier may

set a low energy rate but a high demand rate; this encourages users to make their

electricity demand as constant as possible over the course of a day.) The schedules may

be arbitrarily complex; energy and demand costs usually vary according to the time

of day, day of the week, and amount (in kWh or kW) requested by the customer, and

there may be many other factors taken into account.

Retail wheeling is not widely available in the United States, but it is foreseen that

in the next several years, state utility commissions will require suppliers to offer their

services in a retail wheeling scheme. This will offer customers the opportunity of reduc-

ing their electricity costs by selecting the supplier which will give them the best rate

schedule for the customer’s purposes. So let us now consider the problem, from the

customer’s point of view, of selecting the rate schedule which yields the lowest expected

total electricity cost. The problem, from the supplier’s point of view, of setting the

energy and demand rates according to its economic circumstances, is somewhat more

difficult and will not be considered in this dissertation.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 123

The customer’s problem, as stated, is not strictly a problem in belief network mod-

eling. As probability models, belief networks handle only beliefs, but not values (e.g.,

monetary costs) or decisions. The larger framework of decision theory is needed to

take values into account and make a decision. For this problem, I will describe a belief

network that could be used to compute a probability distribution over different energy

use scenarios, then show how to incorporate the cost information to compute expected

energy costs. For simplicity, I will assume that the value of money is proportional to

its quantity, and that its value does not change over time. However, in a more careful

treatment, other value functions such as a logarithmic function might be considered

(which makes the first dollar more valuable than the last), and the difference between

the nominal value of money and its present value should be taken into account.

Let us assume the customer selects a rate schedule, just before the beginning of each

billing period (typically a calendar month), to minimize expected total electricity cost

over the billing period. Given this, the customer’s decision proceeds as follows.

1. Construct a belief network model of energy use. The customer constructs a model

of its electricity use over the billing period, which is typically one month. The

belief network needs to encompass all the variables within the billing period, since

the demand cost depends on every recorded energy use during the billing period.

2. Compute distributions for the belief network variables. The customer computes a

distribution over the energy use in each time slice, and then uses the distributions

over energy use in each time slice (typically one hour, but sometimes shorter) to

compute a distribution over the maximum energy use.

3. Computing expected costs using the rate schedules. The customer uses the distri-

butions over energy use in each time slice to compute expected energy cost, and

uses the distribution over maximum energy use to compute the expected demand

cost.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 124

4. Select a rate schedule. The decision to use one rate schedule or another will simply

be to choose the rate schedule which yields lowest expected cost.

We shall now consider each of these steps in turn.

7.1 Specification of a belief network for rate selection

To illustrate the use of a belief network to compute the distributions over total and

maximum energy use which are needed for a calculation of expected cost, a simple

building model was constructed as a belief network, shown in Figure 7.1. Since the

problem requires predicting energy use at future times, a relatively detailed model,

based on first principles, should be constructed. (Regression-based models, I believe,

are more suitable to applications in which the data available at the time predictions

are needed is more certain to be similar to the data that were available for training.

However, in the absence of engineering knowledge, regression models could be used.)

This model is a temporal belief network, with one slice per hour in the electricity billing

period, usually one calendar month. The electricity use in the building is divided into

four components:

• Cooling load due to heat transfer into the building through the envelope.

• Cooling load due to occupants. Only the sensible load is considered.

• Cooling load due to sensible heat gain in the outside air brought in for ventilation.

• Electricity use by lights and equipment in the building.

The model building is located in Denver. For simplicity, the building is assumed to be

low and flat, so that heat gains through the roof dominate envelope heat transfer. The

roof consists of 4 inches of concrete. Heat transfer through the roof is modeled by a

discrete convolution of the effective outside temperature Tsol−air, called the “sol-air”

temperature, with a transfer function describing the response of the roof to changes in

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 125

ITo

Tsol−air

Q̇o

Q̇i,gross

Q̇store

Q̇i
Q̇vent

Q̇occ

E

Q̇total

t

Q̇ltg+eq

Figure 7.1: One slice of a belief network to predict energy use in a building, showing

the decomposition of the modeling problem into energy use attributed to lighting and

equipment, occupants, heat gain due to ventilation, and envelope loads. Time is t,

the net heat gain through the envelope is Q̇i, and the electrical demand is E. Arrows

leading into the slice show the dependence of variables on past times; likewise, future

variables are dependent on this slice, as shown by the arrows leading out. Arrows

showing dependence on a constant variable (namely, the envelope area and the indoor

air temperature) have been omitted for clarity. One slice is created for each hour of the

month.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 126

temperature. The heat transfer, per hour, through the roof into the conditioned space

is given by [55]

Q̇i(t) = A
m∑

k=0

bk Tsol−air[t− k]−
m∑

k=1

dk Q̇i[t− k]−A Ti

∑

k

ck (7.1)

where A is the surface area, Ti is the indoor temperature (assumed in this study to be

a constant 72◦ F), and the bk, dk, and ck are constants which depend on the material

of the envelope. The following values [55, Table 7-24] were used.

k = 0 k = 1 k = 2 k = 3
∑

k ck

bk 0.0078 0.0705 0.0355 0.0011 0.1149

dk -0.8789 0.0753 -0.0001 0

Note that time t affects energy use only through its effects on intermediate variables

such as temperature and occupancy. One could therefore substitute more accurate

predictions for the intermediate variables, should they become available. For example,

the National Weather Service may predict that the winter will be unusually warm —

this prediction could be used to construct a distribution over temperature which is

substituted in place of the prediction based solely on time.

Figures 7.2 and 7.3 shows how sub-networks for energy use during one time slice

can be linked together to form a belief network for prediction of the maximum energy

use over the course of the demand cost billing period. Belief networks for different

billing periods need not be linked. Note that this grouped or linked belief network

only computes a distribution over the maximum energy use — it does not compute the

demand cost. The computation of energy and demand costs is considered in §7.3.1.

7.1.1 On the stability of a transfer function model

As noted above, the transfer function model of net inward heat transfer Q̇i expresses

Q̇i[t] as a linear combination of Q̇i[t − 1], Q̇i[t − 2], Q̇i[t − 3], . . . , and other terms.

Thus the transfer function model is an infinite impulse response (IIR) linear filter of

the sequence Q̇i. The output at a time t can be expressed exactly in terms of t and

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 127

Ek,6

Ek,5

Ek,4

Ek,3

Ek,2

Ek,1 Ek,23

Ek,22

Ek,21

Ek,20

Ek,7

Ek,8

Ek,9

Ek,10

Ek,11

Ek,12
Ek,13

Ek,14

Ek,15

Ek,16

Ek,17

Ek,18

Off-Peak[k]

Peak[k]

Mid-Peak[k]

Ek,19

Ek,0

Figure 7.2: Energy use predictors from each time slice, E[k], grouped together into a

belief network to compute a distribution over the daily maximum demand for day k.

Only the variable E from each time slice is shown here; the parents of E, which are

shown in Figure 7.1, are omitted for clarity.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 128

Mid-Peak[3]

Max Peak

Off-Peak[31]

Off-Peak[3]

Off-Peak[2]

Off-Peak[1]

Max Off-Peak

Off-Peak[30]

Off-Peak[29]

Mid-Peak[31]

Mid-Peak[2]

Mid-Peak[1]

Mid-Peak[30]

Mid-Peak[29]

Max Mid-Peak

Peak[29]

Peak[30]

Peak[31]Peak[1]

Peak[2]

Peak[3]

Figure 7.3: Combining daily maxima over the billing period to obtain the maximum for

each category (peak, mid-peak, and off-peak) in the demand rate schedule. The parents

of the variables Peak[k], which are shown in Figure 7.2, are omitted here for clarity.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 129

the roots of the characteristic polynomial associated with the filter; if some of the roots

have magnitude greater than 1, the filter will have modes which grow exponentially

with t, and the filter is said to be unstable [70, § 12.9]. The characteristic polynomial is

defined in terms of the coefficients of the Q̇i[t− k]: if the filter is

Q̇i[t] = −d1 Q̇i[t− 1]− · · · − dm Q̇i[t−m] + terms not involving any Qi[t− k] (7.2)

then the characteristic polynomial is

zm +
m∑

k=1

dk zm−k (7.3)

Note that only the terms involving past values of Q̇i affect the stability of the filter.

It turns out that the mean and variance of Q̇i[t] can be described in a simple way

in terms of the means and variances, respectively, of past values Q̇i[t− k]. Recall that

the mean of a linear combination is a linear combination of the mean of each term, and

the variance of a linear combination is a linear combination of the variance of each term

(replacing each coefficient in the combination by its square); these relations hold for

any kind of distribution. So we have

E[Q̇i[t]] = A

m∑

k=0

bk E[Tsol−air[t− k]]−
m∑

k=1

dk E[Q̇i[t− k]]−ATi

m∑

k=0

ck (7.4)

for the expected value, and

Var[Q̇i[t]] = A2
m∑

k=0

b2
k Var[Tsol−air[t− k]] +

m∑

k=1

d2
k Var[Q̇i[t− k]] (7.5)

So we have here two linear IIR filters, one for the mean of Q̇i[t] and one for the variance.

The characteristic polynominal for the mean is just Eq. 7.3, but the filter for the variance

has the characteristic polynomial

zm −
m∑

k=1

d2
k zm−k (7.6)

Even if the filter for the mean is stable, the filter for the variance may not be. For this

reason, the transfer function coefficients given in reference works are not necessarily

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 130

X1 X2 X3

Y

U1 U2 U3

t2 t3t1

Figure 7.4: A belief network, essentially similar to the building model, for which the

polytree algorithm fails. The parents of Y , which may be the maximum or sum of the

X’s, are not independent. But if the U ’s are given, the X’s become independent — this

is the basic idea of the conditioning algorithm.

usable in a calculation (such as a belief network inference) which propagates variance

as well as expected value. Generally, structures with greater thermal mass have larger

values for the dk; for example, the parameters [55, Table 7-24] for a 4 inch heavy concrete

wall yield a stable variance, but the parameters for an 8 inch heavy concrete wall do

not. Stability could probably be recovered by working with a time interval shorter than

one hour, but this has not yet been investigated.

7.2 A conditioning algorithm for inferences in the building model

Because of the dependence of the heat storage term on past values of Q̇i and the depen-

dence of the inward heat transfer term on past values of Tsol−air, the polytree algorithm

cannot correctly compute a distribution over daily or monthly maxima. Figure 7.4

illustrates the problem. The problem is that the parents of the maximum (called Y

in the figure) are not independent in the absence of downstream evidence. Thus their

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 131

joint distribution does not factor as indicated in Eq. 5.2 into a product of π-messages.

One way to cope with this is to instantiate the U variables which link the time slices

together. According to the rules of d-separation (§2.6.1), this breaks the dependencies

between the slices, and then the polytree algorithm can be applied to compute the

posterior for Y . The general approach exemplified by this tactic is called conditioning:

if U is a variable or set of variables which make a loopy graph into a polytree when

instantiated (a so-called “cut-set”), then we can express a calculation of p(Y |e) as a

weighted average over instantiations of U , like so:

p(Y |e) =
∫

p(Y |U, e) p(U |e) dU (7.7)

Since U is a cut-set, the polytree algorithm applies to p(Y |U, e). Typically, the integra-

tion over U is carried out as an average over some number of discrete instantiations of

U ; thus the result p(Y |e) is a mixture of all the p(Y |U, e), usually weighted equally.

In the case of the building model belief network, the variables

{To[k], Tsol−air[k], Q̇i[k]} are a convenient cut-set. Instantiations of the cut-set

are generated by setting the time variable, t[k], in each time slice, computing the

posterior of each cut-set variable in turn, and instantiating each cut-set variable to a

random value sampled from its posterior distribution. This amounts to generating a

“typical” trajectory or simulation of the cut-set variables. Once all the cut-set variables

(three samples in each time slice) have been sampled, the computation of the daily

and monthly maxima and summations can be computed by the polytree algorithm.

Six sampling runs were made for the results presented in this chapter; a larger number

would yield more accurate results, but it was found the maxima and summations did

not vary too much from run to run, so six is enough, we hope.

The conditioning algorithm was built on top of riso for this particular inference

problem; riso really needs its own built-in algorithm (whether conditioning or some-

thing else) for coping with loopy belief networks, as discussed at slightly greater length

in §5.9.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 132

7.2.1 Computation of a distribution over maximum energy demand

Once the cut-set variables are instantiated, the inference problem becomes much easier.

To obtain a distribution over the maximum energy demand, the electrical demand is

first computed for each time slice, and these variables are independent given the cut-

set variables. The distribution of the maximum of a set of independent variables is

most easily stated in terms of the distribution function, which is the antiderivative of

the probability density. Suppose the variables X1, . . . , Xn have distribution functions

F1, . . . , Fn. Then the maximum of X1, . . . , Xn has the distribution function

Fmax(x) = F1(x) · · ·Fn(x)

That is, the distribution function of the maximum is just the product of the individual

distribution functions. The probability density of the maximum is found by differenti-

ating this expression. The distribution of the maximum may be harder to work with

than the individual distributions, but it is not difficult to compute expected values nu-

merically, since all that is needed is a 1-dimensional integration. Note that even if the

energy demand variables in every time slice have Gaussian distributions, the maximum

energy demand will not have a Gaussian distribution.

7.3 Computing expected costs using rate schedules

7.3.1 General approach for cost calculations

Rate schedules, for both energy and demand costs, are generally similar to this table.

Block On-peak Mid-peak Off-peak

0–10 MWh 0.12 $/kWh 0.10 $/kWh 0.04 $/kWh

10–20 MWh 0.10 $/kWh 0.08 $/kWh 0.02 $/kWh

> 20 MWh 0.08 $/kWh 0.06 $/kWh 0.02 $/kWh

Rate schedules may be arbitrarily complicated, and sometimes require a small book

to completely describe them. For purposes of illustration, we will consider energy and

demand schedules of the following tabular form. Each column in a rate schedule, such as

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 133

the one shown above, is considered a separate table and applied to a different variable.

Lower limit Cost per unit

α1 β1

α2 β2

α3 β3

...
...

αn βn

Thus there are a number of simple tables equal to the number of columns in the energy

cost schedule plus the number of columns in the demand cost schedule. Each table is

applied to calculating the cost of a different variable: the on-peak maximum demand,

the on-peak total energy, the mid-peak maximum demand, the mid-peak total energy,

etc. These variables will be generically denoted x in the equations which follow. In this

scheme, the cost of x units (kWh or kW) is

C(x) = ∆α1β1 + ∆α2β2 + · · ·+ ∆αk−1βk−1 + (x− αk)βk (7.8)

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 134

with ∆αi = αi+1 − αi and k = arg maxi αi < x. Usually α1 = 0. The expected value

of C with respect to the distribution p of x is

E[C] =
∫ +∞

0
C(x) p(x) dx

=
∫ α2

α1

C(x) p(x) dx +
∫ α3

α2

C(x) p(x) dx + · · ·

+
∫ αn

αn−1

C(x) p(x) dx +
∫ +∞

αn

C(x) p(x) dx

=
∫ α2

α1

(x− α1)β1 p(x) dx +
∫ α3

α2

(∆α1β1 + (x− α2)β2) p(x) dx + · · ·

+
∫ +∞

αn

(∆α1β1 + ∆α2β2 + · · ·+ (x− αn)βn) p(x) dx

= β1

∫ α2

α1

(x− α1) p(x) dx + β2

∫ α3

α2

(x− α2) p(x) dx + · · ·

+βn

∫ +∞

αn

(x− αn) p(x) dx

+∆α1β1(1− F (α2)) + ∆α2β2(1− F (α3)) + · · ·

+∆αn−1βn−1(1− F (αn)) (7.9)

noting that F (+∞) = 1.

In general, F is a product of cumulative distribution functions, and for numerical

purposes it is easier to work with F than its derivative p, the density function. The

integrals in Eq. 7.9 can be expressed in terms of the c.d.f.,
∫ αk+1

αk

(x− αk) p(x) dx = (αk+1 − αk) F (αk+1) −
∫ αk+1

αk

F (x) dx (7.10)

by integrating by parts. Substituting Eq. 7.10 into 7.9 yields a simpler formula,

E[C] = β1

∫ α2

α1

1−F (x) dx+· · ·+βn−1

∫ αn

αn−1

1−F (x) dx+βn

∫ +∞

αn

1−F (x) dx (7.11)

Once distributions have been computed over the energy use for each time slice within

a billing period, and a distribution over the maximum energy use has also been com-

puted, it is easy to compute the expected energy and demand costs for the billing period.

The total expected cost is just the sum of the expected energy cost and the expected

demand cost.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 135

4840 4860 4880 4900 4920 4940 4960 4980
0

2

4

6

8

10

12

14

Hours since midnight, Dec. 31

D
em

an
d,

 k
W

Figure 7.5: A simulation of typical electrical demand in the month of July; this figure

shows seven days in the middle of the month. This sequence is a by-product of the

conditioning algorithm described in §7.2. The bars represent the standard deviation of

the posterior distribution of electrical demand, which is nearly constant from hour to

hour and approximately equal to 1.

7.3.2 Computation of costs for the model building

Calculations of demand and energy costs were carried out for the month of July, us-

ing the building model belief network and the rate structures shown in Tables 7.1

through 7.4. Posterior distributions over the monthly peak, mid-peak, and off-peak de-

mand were computed by the conditioning algorithm described in §7.2, as were posterior

distributions for the monthly peak, mid-peak, and off-peak energy use. As part of the

calculation, distributions over the energy demand at each hour of the month were com-

puted; one sequence of these distributions, which corresponds to one instantiation of

the cut-set variables {To[k], Tsol−air[k], Q̇i[k]}, is shown in Figure 7.5. The distribution

over outdoor temperature is assumed to be a Gaussian distribution having a standard

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 136

4900 4905 4910 4915 4920
0

50

100

150

200

250

300

Hours since midnight, Dec. 31

H
or

iz
on

ta
l i

ns
ol

at
io

n,
 B

tu
/h

/ft
2

Figure 7.6: Posterior distributions over hourly horizontal insolation for one day in July;

these is almost identical to the distributions calculated for other days in July. This

figure shows the distribution, represented as a point for the mean value and a bar for

the standard deviation, of insolation at each hour. In the building model belief network,

it is assumed the error in the calculated insolation is proportional to the magnitude of

the insolation, so the error bars are wider at midday than in the morning or evening.

deviation of 10◦ F and a mean value given by a sinusoid with two components, one for

daily variation and one for yearly variation. The distribution over horizontal insolation

is illustrated in Figure 7.6. Every day in July has a daily insolation sequence which is

almost the same as the one shown in Figure 7.6. It is assumed the error in the calculated

insolation is multiplicative, with a standard deviation equal to 10% of the calculated

value.

The posterior distributions for the maximum demand during peak, mid-peak, and

off-peak hours are all shown in Figure 7.7. Each of these distributions is a mixture of

the posterior distributions computed from the six instantiations of the cut-set variables;

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 137

9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maximum demand, kW

P
ro

ba
bi

lit
y

de
ns

ity

Figure 7.7: Posterior distributions for the maximum demand during peak (at right),

mid-peak (center), and off-peak hours (at left). Each one is slightly skewed to the right;

this is typical of the distributions of maxima.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 138

12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peak demand, kW

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Figure 7.8: Cumulative distribution functions for six instances of the posterior of max-

imum peak-hours electricity demand.

a spline approximation (Appendix D) was constructed for each distribution computed

from one instantiation of the cut-set, so the distributions shown in Figure 7.7 are mix-

tures of spline approximation densities. There was not much variation among the pos-

teriors computed from each instantation; for example, Figure 7.8 shows that the six

posteriors computed for the maximum demand during peak hours are all quite similar,

and their median values are all in the range 13.8 to 14.4; the median of the mixture of

these six distributions is about 14.21. This suggests that six instantiations is enough to

capture the variability electrical demand due to the cut-set variables.

The posterior distributions for the maximum demand at different hours of the day

are needed for the calculation of expected energy costs, as described in §7.3.1. Expected

costs were computed according to the cost schedules presented in Tables 7.1 through 7.4.

The total costs (energy and demand) for each of the two utilities are compared in

Table 7.5. As can be seen in the table, Utility A gives a better energy rate for our

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 139

Table 7.1: Energy cost schedule for Utility A. Units are cents per kWh.

Range Peak Mid-Peak Off-Peak

0 – 1000 kWh 6 5 2

1000 — 2000 kWh 5 4 1

2000 kWh & up 4 3 1

Table 7.2: Energy cost schedule for Utility B. Units are cents per kWh.

Range Peak Mid-Peak Off-Peak

0 – 500 kWh 9 6 4

500 — 1500 kWh 7 5 3

1500 kWh & up 5 4 3

example, while Utility B gives a better demand rate; the overall cost is somewhat lower

for Utility B ($551) compared to Utility A ($608). The grand total of energy use for the

month of July, including all hours of the day, has a Gaussian distribution with mean

4538 kWh and standard deviation 49 kWh; this yields blended energy and demand

rates equal to 13.4 cents per kWh and 12.1 cents per kWh for A and B, respectively.

To complete our planning process, we would want to compute energy and demand costs

for every month in the year, and each month choose the utility whose rates give the

lowest total cost.

SELECTING RATES TO MINIMIZE ENERGY AND DEMAND COSTS 140

Table 7.3: Demand cost schedule for Utility A. Units are dollars per kW.

Range Peak Mid-Peak Off-Peak

0 – 12 kW 14 10 8

12 — 15 kW 10 8 6

15 kW & up 8 6 4

Table 7.4: Demand cost schedule for Utility B. Units are dollars per kW.

Range Peak Mid-Peak Off-Peak

0 – 10 kW 9 8 7

10 — 13 kW 7 7 5

13 kW & up 5 6 4

Table 7.5: Comparison of total (energy and demand) costs, computed according to rate

schedules from Utilities A and B.

Utility A Utility B

Energy Peak $ 116 $ 148

Mid-Peak 47 52

Off-Peak 24 48

(subtotal) 188 248

Demand Peak 191 117

Mid-Peak 133 105

Off-Peak 97 81

(subtotal) 421 303

$ 608 $ 551

Blended rate, cents/kWh 13.4 12.1

Chapter 8

ADDITIONAL BELIEF NETWORK APPLICATIONS

8.1 A model of a heating coil

A schematic diagram of a heating coil is shown in Figure 8.1. This heating coil could

be used to recover heat rejected from a refrigeration system, for the purpose of space or

process heat. In this scheme, there is another heat exchanger (not shown) between the

refrigeration system, which uses a halocarbon as its working fluid, and the heating coil,

which uses water as its working fluid. A belief network model of the heating coil is shown

in Figure 8.2. The heating coil model was constructed by Kriengkrai Assawamartbunlue

as part of his research (to be reported in his dissertation), and minor modifications were

made by the present author. The dry-bulb temperature of the exhaust air is calculated

by the following equations.

Cair = mair · Cpa (8.1)

Cw = mw · Cpw (8.2)

Cmin = min(Cair, Cw) (8.3)

Cmax = max(Cair, Cw) (8.4)

C =
Cmin

Cmax
(8.5)

NTU =
UA

Cmin
(8.6)

n = NTU−0.22 (8.7)

η = 1− exp (exp(−NTU · C · n)− 1)
C · n (8.8)

Q = η · Cmin · (Tw − Tdb,ent) (8.9)

Tdb,lvg =
Q

Cair
+ Tdb,ent (8.10)

This is a standard heat transfer model, found, for example, in Ref. [43].

ADDITIONAL BELIEF NETWORK APPLICATIONS 142

Tw, mw

Cpw

Tdb.ent, mair
Tdb.lvg

Cpa

UA

Figure 8.1: Schematic diagram of a heating coil, showing the variables which appear in

the belief network shown in Figure 8.2.

ADDITIONAL BELIEF NETWORK APPLICATIONS 143

status
actual

observed

status
actual

observed

status
actual

observed

status
actual

observed

nominal

multiplier

actual
status

observed

Tdb,ent

mw

mair

Tw

Cpa

Cpw

UA

Tdb,lvg

status
actual

observed

Figure 8.2: A belief network for the heating coil. The relation of the variable

Tdb,lvg.nominal to its parents is described by the heat transfer model, Eqs. 8.1–8.10.

Measured variables are described by simple sensor models; the unmeasured variables

UA, Cpa, and Cpw are simple variables, with values which are usually fixed. This belief

network is implemented as a distributed belief network: each dotted box encloses the

variables in a sub-network, with the name given at the margin of the box; variables

with the same name in different sub-networks are distinguished by including the name

of their sub-network, e.g., Tw.actual is distinct from mair.actual.

ADDITIONAL BELIEF NETWORK APPLICATIONS 144

To decompose the modeling problem into a slightly more comprehensible form, the

belief network was implemented as a distributed belief network, with the variables cor-

responding to each sensor model in a separate sub-network. The names of the variables

are abbreviations, as shown in this list.

Tdb,ent Dry-bulb temperature, air influx

Tdb,lvg Dry-bulb temperature, air exhaust

Tw Temperature of water entering heat exchanger

mair Mass flow rate of air

mw Mass flow rate of water through heat exchanger

UA Overall heat transfer coefficient

Cpa Specific heat (constant pressure) of air

Cpw Specific heat of water

An observed value of a variable is denoted by a caret, e.g. T̂w is a measurement of Tw.

In the belief network description, actual and observed values are two nodes in a small

belief network which has the same name as the variable of interest, e.g., Tw.actual is

the actual value of water temperature and Tw.observed is its measured value. These two

notations will be used interchangeably.

Substantial engineering knowledge is expressed in the belief network shown in Fig-

ure 8.2. Now let us see how this knowledge can be exploited by two different operations

on the heating coil belief network.

8.1.1 Assessing value of information of measurements by MI

The first operation is the assessment of the value of information yielded by different

measurements. Observations can be made on four of the upstream variables: T̂w, m̂w,

m̂air, and T̂db,ent. Not surprisingly, each of the four has a different relevance to the

variable of greatest interest, Tdb,lvg. The value of information of measured variables

was assessed as the mutual information MI of a group of measurements with Tdb,lvg;

ADDITIONAL BELIEF NETWORK APPLICATIONS 145

average conditional mutual informations were computed and combined according to the

identity, Eq. F.2, to yield joint mutual information.

From Table 8.1, we see that T̂db,ent appears to be the most important measurement

— it has a higher mutual information with Tdb,lvg than any other single variable, and

all of the groups with high mutual information contain it. We might rank groups of

variables as follows: the most important single variable is T̂db,ent; the most important

pair is T̂w and T̂db,ent; and the most important set of three is T̂w, m̂air, and T̂db,ent.

On the other hand, m̂w has a very low individual mutual information with Tdb,lvg, and

none of the most informative groups contain it. This suggests that if m̂w is difficult

to measure, or if there are funds for only a limited number of sensors, we could omit

measurements of m̂w with very little effect on the posterior distribution for Tdb,lvg. Note

that this does not mean we will rewrite the model to exclude mw; it will still appear in

the heating coil model, but its prior will be used instead of a distribution derived from

a measurement. We can omit m̂w, but not mw.

The Kullback-Leibler divergence between two Gaussian densities has a simple form,

given by Eq. F.4. Two special cases can help us gauge the informativeness of measure-

ments: (i) if p1(x) = g(x; 0, σ1) and p2(x) = g(x; 0, σ2), then

KL(p1, p2) =
1
2

(
σ2

1

σ2
2

− 1
)
− log

σ1

σ2
[nats] (8.11)

(ii) if p1(x) = g(x; µ1, 1) and p2(x) = g(x;µ2, 1), then

KL(p1, p2) =
1
2
(µ1 − µ2)2 [nats] (8.12)

Thus a mutual information equal to M bits is approximately equivalent to reducing

the standard deviation by a factor 1/(2M√e), on the average, without moving the

location, or moving the location by
√

2M log 2, on the average, without changing the

standard deviation. Since the posterior for Tdb,lvg is approximately Gaussian whatever

the evidence (the functional relation is only mildly nonlinear and the π-messages are

Gaussian), the column labeled “2bits” can be interpreted in terms of average reduction

in standard deviation from prior to posterior, or in terms of moving the posterior away

from the prior.

ADDITIONAL BELIEF NETWORK APPLICATIONS 146

Table 8.1: Groups of variables in the heating coil model, ranked by mutual information

with Tdb,lvg. Mutual information was computed for the variables in each row marked

with plus signs.

T̂w m̂w m̂air T̂db,ent nats bits 2bits

+ + + + 1.783 2.57 5.95

+ + + 1.584 2.29 4.87

+ + + 1.242 1.79 3.46

+ + 1.150 1.66 3.16

+ + + 1.144 1.65 3.14

+ + 1.065 1.54 2.90

+ + 0.9043 1.31 2.47

+ 0.8551 1.23 2.35

+ + 0.09667 0.14 1.10

+ + + 0.08813 0.13 1.09

+ + 0.04949 0.071 1.05

+ 0.04579 0.066 1.05

+ + 0.04196 0.061 1.04

+ 0.03855 0.056 1.04

+ 0.009176 0.013 1.01

ADDITIONAL BELIEF NETWORK APPLICATIONS 147

The low mutual information MI(m̂w, Tdb,lvg) may be due, in part, to the relatively

low accuracy of the m̂w sensor compared to the range of mw. The effect of a more

accurate sensor could be studied by assigning a smaller conditional variance to the

distribution of m̂w given mw, and recomputing the mutual information.

8.1.2 Is Tdb,lvg higher or lower than expected?

A belief network fragment of the form shown in Figure 6.1 was grafted into the Tdb,lvg

network shown in Figure 8.2. This enables us to answer the question “Is Tdb,lvg higher

or lower than expected?” by computing a posterior distribution over Tdb,lvg.multiplier.

The variable Tdb,lvg.actual is just the product of its parents Tdb,lvg.nominal and

Tdb,lvg.multiplier, so the distribution over the multiplier is just the distribution of a

ratio.

Let us consider a few example calculations. With the measurements

T̂w 195 ◦F

m̂w 8.7 Klbm/h

m̂air 79.5 Klbm/h

T̂db,ent 104 ◦F

T̂db,lvg 122.5 ◦F

we find the posterior distribution of the multiplier is sharply peaked near 0.90; the

π-message sent to Tdb,lvg.actual from Tdb,lvg.nominal is nearly Gaussian with a mean

136.1 and standard deviation 2.159, which is just about 10% greater than the observed

value T̂db,lvg = 122.5. However, if the T̂db,ent measurement is missing, the π-message

from Tdb,lvg.nominal is much broader; in this case it is again nearly Gaussian with mean

127.9 and standard deviation 12.93. Now the posterior of the multiplier is much broader

than before, with mean 0.9674 and standard deviation 0.1013; it is noticeably skewed

toward the right, which is typical of densities of ratios. The two posterior distributions

are shown in Figure 8.3.

We could use the posterior distribution of Tdb,lvg.multiplier to generate warning

ADDITIONAL BELIEF NETWORK APPLICATIONS 148

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

2

4

6

8

10

12

14

16

18

20

Tdb,lvg multiplier

D
en

si
ty

Figure 8.3: Two posterior distributions of the Tdb,lvg multiplier. The narrower distri-

bution was computed with measurements T̂w, m̂w, m̂air, T̂db,ent, and T̂db,lvg. The wider

distribution was computed using only T̂w, m̂w, m̂air, and T̂db,lvg, and not T̂db,ent.

ADDITIONAL BELIEF NETWORK APPLICATIONS 149

messages. The general scheme is to set limits on the allowable range of the multiplier,

saying, for instance, that values within the range 0.95 to 1.05 are allowable, but values

outside that range indicate there is some kind of problem. Then we just compute

the probability mass which falls in each interval, [0, 0.95], [0.95, 1.05], and [1.05, +∞).

Actions such as message generation are considered only incidentally in this dissertation,

so let it be enough for now to state that we want to see a relatively large mass in the

middle interval, and if the lower or higher interval has enough mass, we’ll generate a

message.

8.2 A model of a mixing box damper

At the terminal end of the duct which supplies conditioned air from the air handling

unit to a building zone, there is typically a device called a mixing box which controls the

delivery of air to the zone. There may be dozens or even hundreds of these devices in

a large building, so even though mixing boxes are usually very reliable, there may well

be a few which are malfunctioning. Given the number of units which would have to be

inspected, automated diagnostics are attractive. A further consideration is that mixing

boxes are usually built as inexpensively as possible, so it is desirable to implement

diagnostics with as few sensors as possible, beyond those that are already necessary for

the operation of the mixing box.

The mixing box design which is the subject of this section was the subject of a

report published elsewhere [28]. The mixing box, which is installed in the Larson HVAC

laboratory at the University of Colorado, is shown schematically in Figure 8.4. A belief

network for the damper alone is shown in Figure 8.5. The belief network consists of a

number of time slices, which represent the state of the damper and associated variables

at uniform time intervals. In experimental testing, four variables were measured: zone

temperature offset (ZTO), supply duct static pressure (p0), supply duct damper position

(DP), and total electric power (P). P comprises fan power and reheat coil power; electric

power is not relevant to diagnosis of damper problems, so P was omitted from the belief

network for the damper. The damper is controlled according to ZTO and p0 so that the

ADDITIONAL BELIEF NETWORK APPLICATIONS 150

From
Plant

To
Zone

Return Air

Figure 8.4: Schematic diagram of a typical mixing box, showing the damper at left,

reheat coils at right, and the return fan above. The static pressure p0 is measured

in the supply duct (at left). The zone temperature offset ZTO is calculated as the

temperature in the conditioned space minus the thermostat setpoint.

volume of supply air at large temperature offsets is approximately constant. Further

details of the experimental set-up are given in Ref. [28].

8.2.1 Local models in the damper belief network

Local conditional probability models were constructed from both laboratory data and

from engineering knowledge1 — the model of correct operation of the damper was

derived from empirical data, while models of other states of damper operation were

constructed from engineering principles, likewise the models of correct and incorrect

sensor operation were constructed from engineering knowledge of the sensors.

There are three parts of the mixing box damper belief network. Let us specify the

parameters for each part, then consider some inferences which illustrate the interaction

of the various parts. The complete temporal belief network, in riso format, may be

1 The author gratefully acknowledges the assistance of Peter Curtiss.

ADDITIONAL BELIEF NETWORK APPLICATIONS 151

p0

DP
ZTO

p̂0

D̂P

DP ?

ZTO ?

S ?

p0 ?

ẐTO

Figure 8.5: One slice of a temporal belief network for the mixing box damper. The

variables are damper status, S?, zone temperature offset, ZTO, supply duct static

pressure p0, and damper position, DP . Observed values (i.e., sensor readings) are

distinguished by a caret, and status variables are distinguished by a question mark.

E.g., p̂0 is the observed value of p0, and p0? is the pressure sensor status variable. The

arrows leading into and out of S? are links to the status variables in the previous and

succeeding time slices, respectively.

ADDITIONAL BELIEF NETWORK APPLICATIONS 152

found in the file damper-tbn.riso under the heading “Example riso belief networks”

at the web site, http://civil.colorado.edu/~dodier.

Transitions of S? The transition of damper states S? from one time step to the next; in

the absence of any sensor observations, the successive variables . . . , S?[t−1], S?[t], S?[t+

1], . . . are a simple Markov chain. (The damper status variable is denoted S? when there

is no danger of ambiguity, and by S?[t] when it is necessary to distinguish the time slice.)

Four states are distinguished: (i) correct operation of the damper, (ii) damper stuck

open, (iii) damper stuck closed, and (iv) unknown state. The last state is a catch-all for

the damper stuck in an intermediate position and any other kind of failure not foreseen.

The transition matrix for these states is the following:

to

from

1− α α/3 α/3 α/3

β1 1− (β1 + β2) 0 0

β1 0 1− (β1 + β2) β2

1/4 1/4 1/4 1/4

(8.13)

The parameters are assigned as

α = 10−3, β1 = 10−6, β2 = 9× 10−6 (8.14)

This transition matrix expresses the following: if the damper is operating correctly,

usually it will continue to operate correctly, but with low probability it may transition

into one of the other states. If the damper is stuck open or closed, it is almost certain

to stay in that state, and very unlikely to transition back to the correct state, although

with somewhat greater probability it may transition into the “unknown” state. The

“unknown” state may transition into any other state with equal probability.

It is clear that constructing a transition matrix brings substantial prior information

to bear on the diagnosis problem. As ever, one can spend as much effort as one likes on

a single conditional probability model in a belief network, and the laws of probability

ADDITIONAL BELIEF NETWORK APPLICATIONS 153

will ensure that the information in that local model is combined with the rest of the

belief network to yield correct global inferences.

Model of DP given S?, p0, and ZTO. The damper operates in different ways depend-

ing on the zone temperature offset, duct static pressure, and operating status. These

different operating modes are expressed as generative models for damper operation —

that is, models which predict where the damper will be, depending on the particular

combination of driving variables p0, ZTO, and S?. The generative model of DP is

coded as a set of four distributions indexed by S?, with one distribution in the set for

each state of S?.

(i) The model for DP |S? = 0, p0, ZTO is a neural network with two inputs (one

for p0 and one for ZTO), six hidden units, and one output (for DP). The number

of hidden units was chosen by minimizing the so-called “Bayesian Information

Criterion” or BIC [60] on a training data set, comprising several thousand data

obtained in the HVAC laboratory. The BIC is defined (ignoring constants) as

BIC = log MSE + p
log n

n
(8.15)

where MSE is the mean-square error of prediction on the training set, p is the

number of free parameters (weights and biases in a neural network) in the model,

and n is the number of data in the training set. The term (p/n) log n tends to

weigh against networks with many hidden units, unless the training data set is

very large. It has been found empirically that selecting a neural network which

minimizes BIC on a given training set usually yields the best out-of-sample error.

The residual root mean-square error on the training set was 0.4344, which is taken

as the magnitude of the Gaussian additive noise associated with predictions of DP .

(ii) The model for DP |S? = 1, p0, ZTO is a Gaussian distribution of DP with mean

9.6 and standard deviation 0.4344.

(iii) The model for DP |S? = 2, p0, ZTO is a Gaussian distribution of DP with mean

4.1 and standard deviation 0.4344.

ADDITIONAL BELIEF NETWORK APPLICATIONS 154

(iv) The model for DP |S? = 3, p0, ZTO is a uniform distribution of DP over the

range [4.5344, 9.1656]. Like the distributions for DP |S? = 1 and DP |S? = 2, it

is independent of p0 and ZTO.

These generative models, which give the conditional distribution over damper positions

depending on the damper status, are essentially “inverted” according to the laws of

probability to obtain a distribution over the damper status.

Sensor models. Each observed variable has a sensor model. A distribution over the

real or actual value is inferred from the measurement. All three sensors are reported in

volts, without translation into engineering units. The scale of the ZTO and DP sensors

is zero to 10 volts, while the scale of the p0 sensor is zero to 0.5 volts. The open-circuit

measurement is, therefore, zero volts.

When the sensor operates correctly, the measurement is assumed to be the actual

value distorted by Gaussian additive noise. The only failure mode modeled is the open

circuit. So we have a common model for all three sensors, with different parameters:

X̂ |X, X? = 0 ∼ N(X, σ2bX) (8.16)

X̂ |X, X? = 1 ∼ N(0, σ2bX) (8.17)

Here X stands for one of ZTO, DP , or p0, and the sensor states are 0 for “correct

operation” and 1 for “open circuit.” The magnitude of the additive noise for each

sensor is the following:

σ dZTO
= 0.1, σdDP

= 0.2, σp̂0 = 0.025 (8.18)

The prior probability of failure for each of the sensors is 0.01.

Additional information about sensors, such as models of other kinds of sensor fail-

ures, could be incorporated without changing the S? transition model or the generative

models of damper operation. Probabilistic modeling allows the decomposition of the

modeling problem into independent pieces, which are then combined according to the

laws of probability.

ADDITIONAL BELIEF NETWORK APPLICATIONS 155

8.2.2 Belief revision in a temporal belief network

In a belief network, every posterior probability is contingent upon the evidence available

at the time it was computed, and if new evidence is acquired, old beliefs might have to

be revised — specifically, the posterior of every variable d-connected to the new evidence

must be recomputed. So the computation of a posterior distribution for S?[6], say, is

not the final word about the dampers status at time slice 6. Time slices 7, 8, 9,. . . will

bring new evidence which leads us to revise our beliefs about time slice 6. Whereas we

might initially suspect a problem, further evidence might lead us to conclude there was

no problem at all, and vice versa. Let us consider a specific example of belief revision

in the mixing-box damper belief network.

Table 8.2 shows data collected in the HVAC laboratory at one minute intervals.

These data show how the damper opens as the zone temperature offset increases —

this is about half of one typical cycle of operation, and the damper closes as zone

temperature offset decreases in the other half of the cycle. Ten time slices of the

damper belief network were created, and the values shown in the first five rows were

copied into time slices 1 through 5 as evidence. The values of ẐTO[6] and p̂0[6] were

copied verbatim, but the value 4.1 was copied into D̂P [6] instead of the correct value,

6.460. We will compute the posterior of S?[6] with increasing evidence to see how the

belief network handles the glitched datum.

The posterior for S?[6] was computed with evidence e1 through e5, then e1 through

e6, e1 through e7, and so on. The posterior for S?[6] is shown at each time step in

Table 8.3. The λ-message sent from DP [6] to S?[6] is

λDP [6],S?[6] = [3.071× 10−5, 3.764× 10−84, 0.9961, 0.003848] (8.19)

so the likelihood ratio for “stuck closed” against “normal operation” is 0.9961/3.071×
10−5 ≈ 32440. Due to this strong evidence in favor of “stuck closed,” the posterior

for S?[6] given e1 through e6 puts most of its mass (0.9297) on the “stuck closed”

state. However, with additional evidence e7 which overwhelmingly supports “normal

operation” against “stuck closed” (with a likelihood ratio 2.6× 1026), the posterior for

ADDITIONAL BELIEF NETWORK APPLICATIONS 156

Table 8.2: Mixing-box data collected in the HVAC laboratory at one minute intervals.

The value shown in parentheses for D̂P [6] was observed, but the value 4.1 was assigned

as evidence instead. All measurements are in volts.

k ẐTO p̂0 D̂P

1 3.994 0.3271 4.170

2 4.341 0.4102 4.185

3 4.702 0.3906 4.180

4 5.005 0.4053 4.644

5 5.352 0.3516 5.347

6 5.649 0.3223 4.1 (6.460)

7 5.981 0.1514 7.856

8 6.245 0.2197 9.512

9 6.509 0.1904 9.658

10 6.704 0.1758 9.673

Table 8.3: Posterior for S?[6] with increasing evidence, e1 ∪ · · · ∪ ek, k = 5, . . . , 10.

Evidence Posterior for S?[6]

e1 ∪ · · · ∪ e5 0.9988 3.651× 10−4 4.263× 10−4 3.751× 10−4

e1 ∪ · · · ∪ e6 0.06713 3.008× 10−84 0.9297 0.003160

e1 ∪ · · · ∪ e7 0.9415 5.733× 10−41 5.081× 10−4 0.05803

e1 ∪ · · · ∪ e8 0.9564 9.586× 10−41 3.485× 10−4 0.04327

e1 ∪ · · · ∪ e9 0.9551 1.024× 10−40 3.614× 10−4 0.04450

e1 ∪ · · · ∪ e10 0.9546 1.051× 10−40 3.672× 10−4 0.04506

ADDITIONAL BELIEF NETWORK APPLICATIONS 157

S?[6] is revised to favor “normal operation.” Further evidence e8, e9, e10, continues to

support S?[6] = 0.

The transition matrix for S? assigns a very small probability to the sequences such

as “normal” → “stuck closed” → “normal.” Thus glitches are smoothed out, since it

is more probable that the state was normal and the datum is strange than the state

changed from a failure to normal operation. We might report an error at time step 6,

since the probability of the normal damper state is small at that time. However, we

would want to retract the alarm after receiving more evidence which shows the data

at time step 6 were just a glitch. Perhaps for unimportant problems, we would always

wait some time before issuing an error message, to be more certain that the problem is

real. On the other hand, for costly problems, we would issue messages right away, even

if there is a higher risk of false alarms.

8.2.3 Strengthening repeated weak evidence

An hypothesis which is only weakly supported by the evidence in one time slice may

increase in probability if evidence in other time slices supports the same hypothesis.

Suppose that we consider 10 time slices of the mixing-box damper belief network. Ini-

tially, there is evidence only in slice 1, with

e1 = {ẐTO = 5.6494134, D̂P = 9.1, p̂0 = 0.15} (8.20)

Taking the prior distribution over S? as one which heavily favors “normal operation”

(state 0) over the others,

pS?[1] = [0.97, 0.01, 0.01, 0.01] (8.21)

we find the posterior distribution still favors “normal operation,” with Pr(S?[1] =

0 | e1) = 0.9732 and Pr(S?[1] = 1 | e1) = 0.02526. States 0 and 1 (“normal opera-

tion” and “stuck open”) have increased probability, at the expense of states 2 and

3 (“stuck closed” and “unknown”). But if the same evidence is assigned in time

slice 2, so e2 = e1, we find the probability of “normal operation” decreases, with

ADDITIONAL BELIEF NETWORK APPLICATIONS 158

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time steps

P
ro

ba
bi

lit
y

Figure 8.6: Repeated weak evidence in a temporal belief network eventually supports

a strong conclusion. This graph shows Pr(S?[k] = 0 | e1 ∪ · · · ∪ ek) as circles, and

Pr(S?[k] = 1 | e1 ∪ · · · ∪ ek) as crosses, for k = 1, 2, 3, . . . , 10. (Probabilities for states

2 and 3 of S?[k] are not shown, as they are very small in every time slice.) The

evidence in each slice j = 1, . . . , 10 is denoted ej , and for each slice it is the same:

ej = {ẐTO = 5.6494134, D̂P = 9.1, p̂0 = 0.15}.

Pr(S?[1] = 0 | e1∪e2) = 0.9497 and Pr(S?[1] = 1 | e1∪e2) = 0.04989. Putting the same

evidence into each time slice, ek = e1, and computing the posterior of S?[k], we find

the probability of “normal operation” gradually declines, and the probability of “stuck

open” rises, as shown in Figure 8.6. The λ-message (likelihood function) which is sent

from DP [k] to S?[k] is the same in each time slice, with

pej |S?[k] = λDP [k],S?[k] = [0.2841, 0.5588, 8.245× 10−65, 0.1571] (8.22)

This likelihood function supports the “stuck open” hypothesis at about 2 to 1 odds

over the “normal operation” hypothesis, while the “unknown status” hypothesis also

has substantial support. In the absence of any evidence from other time slices, the weak

support for “stuck open” would be swamped out by the prior odds in favor of “normal

operation,” which in these computations were 97 to 1. However, the presence of weak

ADDITIONAL BELIEF NETWORK APPLICATIONS 159

support for “stuck open” in every time slice accumulates, and as Figure 8.6 shows,

after a few time slices, the posterior probability for “normal operation” decreases, and

after 10 time slices “stuck open” has much higher posterior probability than “normal

operation.”

Since the evidence in each time slice affects the posterior of S?[k] only through the

λ-message λDP [k],S?[k], any evidence which yielded the same λ-message would yield the

same posterior probabilities. So it was only for convenience that the evidence was taken

as the same in every time slice; the reinforcement of weak evidence is a general property

of the belief network, and not especially associated with having the same evidence from

one time slice to the next.

8.2.4 Predictions from the damper belief network

In the treatment of the glitched datum in §8.2.2, we may wonder what is the “usual”

value of the damper position, if not the value 4.1 which was assigned. We can use the

belief network in a predictive sense to obtain a distribution over the damper position

measurement, to see what observation we could expect for D̂P given the other observa-

tions in the belief network. Recall that we observed ẐTO[6] = 5.649 and p̂0[6] = 0.3223.

Let us assume the damper is operating correctly and the sensors are working correctly.

Then the posterior of D̂P [6] is computed as a nearly Gaussian distribution with mean

6.652 and standard deviation 0.5495. Table 8.2 shows the actual measurement was

D̂P [6] = 6.460, which is not far from the predicted value; the non-glitched value would

have been strong evidence in favor of the “normal operation” state.

We might just as well ask what combination of the other observables (zone tempera-

ture offset and duct static pressure) correspond to the glitched value D̂P [6] = 4.1. That

is, when is 4.1 an expected or predictable value? Setting D̂P [6] to the glitched value and

holding the duct pressure at the observed value 0.3223, the posterior for ẐTO[6] was

computed as a monotone cubic spline approximation (Appendix D) with about 4500

support points. As shown in Figure 8.7, the posterior for ẐTO[6] is heavily skewed

toward the left — in a sense, the observed value ẐTO[6] = 5.649 is “too high,” and it

ADDITIONAL BELIEF NETWORK APPLICATIONS 160

−2 0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ZTO

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 8.7: Posterior distribution for ẐTO[6] given D̂P [6] = 4.1, p̂0[6] = 0.3223, and

assuming the damper is operating correctly. This density is approximated as a monotone

spline with about 4500 support points. The measurement ẐTO[6] = 5.649 is marked

with an open circle.

should be smaller to fit the glitched damper position measurement.

Chapter 9

CONCLUDING REMARKS

This dissertation has expounded the theoretical basis of distributed belief networks,

described a particular implementation of the theory, and presented several applications.

Let us close with a few remarks on an important class of belief network applications

which remain unexplored. Of all the problems which might be described by belief

networks, I believe the models described in §9.1 are among the the most promising.

We will briefly consider three belief networks for updating or tuning parameters of an

equipment model “on the fly.”

9.1 Calibration in situ and other learning applications

Exemplars of mass-produced equipment function more or less the same. Often there is

enough prior information to set up the general form of a model for the equipment as

designed, but some parameters need to be adjusted to better fit a particular instance.

For example, the maximum and minimum damper positions or the power use levels (fan

alone, or fan and heating coils) in a mixing box are parameters which are important to

know for models of operation in failure states. Without knowing the heating coil power

use, for example, it is not possible to identify a state in which the heating coil failed to

operate. We can construct models in the factory which mention power levels or extreme

damper positions, but the most appropriate values for these parameters will depend on

accidents of manufacture and installation.

One approach to handling parameters in need of calibration is to make them variables

in a belief network which describes observables and status variables. Since configurable

parameters usually modify the relations between other variables, they will appear as

parents (and not as children) in the belief network. A very generic representation of this

CONCLUDING REMARKS 162

λ
a, b, c, . . .

λ

π

Past time slices Future

Figure 9.1: A generic representation of a belief network for adjustment of model pa-

rameters in situ. Observed variables are shaded.

arrangement is shown in Figure 9.1. This belief network has a commonly-encountered

form: relations among the physical variables in a system are represented by a sub-

network which is replicated into many time slices, and the parameters which govern

these relations are the parents of at least one variable in every time slice. Information

flows from past observations into the present and future via the common parents. Like-

lihood functions (λ-messages) are calculated from observations in past time slices, and

transmitted to the nodes for the model parameters. When inferences are computed

for variables in future time slices, prior information about the parameters, in the form

of their prior distribution, is combined with information from observations to yield a

π-message which summarizes all that is known about the parameters. As ever, prior

information dominates when there are few observations, while sufficient observed data

will wash out the influence of the prior.

Each installed exemplar of a certain kind of equipment tells something about how

that kind of equipment works. When a new unit is installed, it would be helpful to

CONCLUDING REMARKS 163

exploit the information gathered at other sites to predict and diagnose the behavior of

the new unit. A distributed belief network which generalizes Figure 9.1 is shown in

Figure 9.2. In this belief network, information gathered at each installation updates the

local parameters (a1, b1, c1 and a2, b2, c2 in the figure) and influences future inferences at

each site, but λ-messages are also passed back to a central site — perhaps maintained

by the manufacturer — which establishes a generic distribution over the equipment

parameters, expressed as a prior distribution for the “meta-parameters” ã, b̃, c̃. In the

absence of observations at a new installation, the parameters at the new site will reflect

both the factory prior and the accumulated information from other sites, which will

gradually be modified or displaced by local observations.

Another very general form of belief network for learning is shown in Figure 9.3. We

may know that a system contains equipment of one of several kinds, but we would like

to automatically determine which particular kind it is. For example, we may know the

equipment is from one of several manufacturers but not know which one, or again, we

may know the equipment is one of several models in a product line but not know which

one. In this case, the appropriate probabilistic model depends on which particular type

of equipment is present. So our belief network contains a node for the equipment type,

which is parent of the model parameters, since for each type there will correspond a

set of parameters appropriate for that type. The equipment type and its parameters

are together the parents of variables in all time slices of the system model. As in Fig-

ure 9.1, information flows from past observations into future predictions and diagnoses.

One inference of great interest will be the posterior over the equipment type — if the

observations are sufficient to distinguish different kinds of equipment, we could hope the

belief network will help us determine what kind of equipment is present in the system.

While conceptually simple, the calculations required for belief networks of the form

shown in Figure 9.1 can be extremely burdensome. For some special cases, fast, exact

calculations are possible, but these happy circumstances are rare. An excellent overview

of the conceptual and computational problems involved, with some exact results and

suggestions for computing approximations, is given in Ref. [11]. Given the broad appli-

CONCLUDING REMARKS 164

Site 2

a1, b1, c1

a2, b2, c2

ã, b̃, c̃
Site 1

At the Factory

Figure 9.2: A distributed belief network to allow messages about equipment parameters

to pass between different installation sites.

CONCLUDING REMARKS 165

a, b, c, . . .

Past time slices Future

Equip. type

Figure 9.3: A belief network to infer equipment type from observations. Given equip-

ment type, this belief network reduces to the form shown in Figure 9.1.

CONCLUDING REMARKS 166

cability of in situ model adjustment, further research in this direction seems well worth

the trouble. It may be possible to invent approximate inference algorithms which are

well-suited to belief network structures of the kinds shown in Figures 9.1–9.3.

9.2 In closing

In this dissertation, I have tried to describe how we can use the laws of probability to

obtain interesting inferences from whatever data we may have. Along the way, some

elementary examples were described; if the results ever seemed strange, the problem

could not lay in the laws of probability, for they only encode the desiderata which we

set forth in Chapter 2. Strange results might be the outcome of models which are a

poor fit to an actual system, or mistakes or poor approximations in calculations, or

the omission of critically relevant information — thus strange results indicate we need

to revise our belief networks and debug our numerical algorithms or invent new ones.

Unless we change our desiderata, we need not search further for a reasoning framework:

When I try my system out I’m going to get nonsense answers. When this happens
I want to know that the problem is in how I encoded the knowledge, not in my
uncertainty calculus,

a comment attributed to Eugene Charniak. Interesting problems will require substantial

effort, but we may safely detour the construction of new reasoning systems and direct

our effort entirely toward formalizing the problem and computing any inferences we find

useful.

The framework developed in Chapters 2, 4, and 5 exhibits several interesting qualita-

tive properties, as illustrated in the examples from Chapters 6 and 8. These qualitative

properties, including the expression of prior knowledge, fusion of different sources of

information, representation of prediction and diagnosis as different operations on a sin-

gle model, quantification of the value of information, and other properties discussed at

length in §§2.7–2.8, are the best reasons to use probabilistic models. Particular inference

algorithms and model types will come and go with the varying demands of applications,

but the foundation of probability, like the Parmenidean One, remains.

BIBLIOGRAPHY

[1] J. Aczel. Lectures on functional equations and their applications. Academic Press,

New York, 1966.

[2] G. Almasi and A. Gottlieb. Highly Parallel Computing. Redwood City, CA: Ben-

jamin/Cummings Publishing Co., 1989.

[3] Belief network file format for XML. URL http://www.research.microsoft.-

com/research/dtg/bnformat, 1999.

[4] DNET-1 File Format. URL http://www.norsys.com/dl/DNET File Format.txt,

1995.

[5] K. Arrow. The economics of information. Harvard University Press, Cambridge,

MA, 1984.

[6] M. Baioletti. Metodi computazionali per l’inferenza bayesiana con dati incompleti.

PhD thesis, Universitá degli Studi di Perugia, 1996. URL http://gauss.stat.-

unipg.it/~asterix/pubbl/tesi.ps.gz.

[7] A. Becker and D. Geiger. Approximation algorithms for the loop cutset problem.

In R. Lopez de Mantaras and D. Poole, editors, Proc. 10th Conf. on Uncertainty

in Artificial Intelligence, pages 60–68. San Francisco: Morgan Kaufmann, 1994.

[8] A. Bird. Philosophy of science. UCL Press, 1998.

[9] P. Bratley and B. L. Fox. Sobol’s quasirandom sequence generator for multivariate

quadrature and optimization. ACM Trans. on Mathematical Software, 14(1):88–

100, 1988. Algorithm 659, http://www.netlib.org/toms/659.

BIBLIOGRAPHY 168

[10] E.O. Brigham. The fast Fourier transform. Prentice-Hall, Englewood Cliffs, N.J.,

1974.

[11] W.L. Buntine. Operations for learning with graphical models. J. Artificial In-

telligence Research, 2:159–225, 1994. URL http://www.cs.washington.edu/-

research/jair/home.html.

[12] W.L. Buntine. Prior probabilities. Tutorial given at NATO Workshop on Learn-

ing in Graphical Models, Erice, Italy. URL http://www.ultimode.com/wray/-

refs.html, September 1996.

[13] E. Castillo, J.M. Gutierrez, and A.S. Hadi. Expert Systems and Probabilistic Net-

work Models. Springer-Verlag, New York, 1997.

[14] E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50–63, 1991.

[15] T. Chu and Y. Xiang. Exploring parallelism in learning belief networks. In

D. Geiger and P. Shenoy, editors, Proc. 13th Conf. on Uncertainty in Artificial

Intelligence. San Francisco: Morgan Kaufmann, 1997.

[16] R.T. Clemen. Making hard decisions. Duxbury Press, Belmont, CA, 1991.

[17] R.G. Cowell, A.P. Dawid, and P. Sebastiani. A comparison of sequential learning

methods for incomplete data. In J.M. Bernardo, editor, Bayesian Statistics 5:

Proceedings of the Fifth Valencia International Meeting, pages 533–542. Oxford:

Clarendon Press; New York: Oxford University Press, 1996.

[18] R.T. Cox. Probability, frequency, and reasonable expectation. Am. J. Physics,

14(1):1–13, 1946. Reprinted in Ref. [74].

[19] R.T. Cox. The algebra of probable inference. Johns Hopkins Press, Baltimore, 1961.

BIBLIOGRAPHY 169

[20] R.T. Cox. Of inference and inquiry: an essay in inductive logic. 1978. pp 119–167

in Ref. [52].

[21] F. Cozman. The interchange format for Bayesian networks. URL http://www.-

cs.cmu.edu/afs/cs/user/fgcozman/www/Research/InterchangeFormat/.

[22] P. Dagum, A. Galper, E. Horvitz, and A. Seiver. Uncertain reasoning and fore-

casting. Int’l J. Forecasting, 11(1):73–87, 1995.

[23] Pierre-Simon de Laplace. Théorie analytique des probabilités. Courcier Imprimeur,

Paris, 1812.

[24] Pierre-Simon de Laplace. Essai philosophique sur les probabilités. Courcier Im-

primeur, Paris, 3rd edition, 1816. (See also the translation by Dale [25], which has

extensive notes.).

[25] Pierre-Simon de Laplace. Philosophical essay on probabilities. Springer-Verlag,

New York, 1995. Translated by A.I. Dale from the fifth French edition (1825).

[26] Jan de Leeuw. Statistics and the sciences. URL http://www.stat.ucla.edu/-

papers/preprints/152.ps.gz, 1994.

[27] F.J. Dı́ez. Local conditioning in Bayesian networks. Artificial Intelligence, 87:1–20,

1996.

[28] R. Dodier, P.S. Curtiss, and J.F. Kreider. Small-scale on-line diagnostics for an

HVAC system. ASHRAE Transactions, 104(1), 1998.

[29] E. Driver and D. Morrell. Implementation of continuous Bayesian networks using

sums of weighted Gaussians. In P. Besnard and S. Hanks, editors, Proc. 11th Conf.

Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1995.

BIBLIOGRAPHY 170

[30] E. Driver and D. Morrell. A new method for implementing hybrid Bayesian net-

works. Unpublished technical report, 1998.

[31] A. Fairbanks. The first philosophers of Greece. 1898. Translations of the extant

fragments of Xenophanes may be found at URL http://history.hanover.edu/-

texts/presoc/xenophan.htm.

[32] A. Fraser and A. Dimitriadis. Forecasting probability densities by using hidden

Markov models. 1994. pp 265–282 in Ref. [83].

[33] F.N. Fritsch and J. Butland. A method for constructing local monotone piecewise

cubic interpolants. SIAM J. Sci. Stat. Comp., 5(2):300–304, 1984.

[34] Z. Ghahramani and M. Jordan. Factorial hidden Markov models. In D. Touretzky,

M. Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing

Systems 8, Cambridge, MA, 1996. MIT Press.

[35] W.R. Gilks, A. Thomas, and D.J. Spiegelhalter. A language and program for

complex Bayesian modelling. The Statistician, 43:169–178, 1994.

[36] L. Groarke. Skepticism, Ancient. 1998. In Ref. [88].

[37] I. Hacking. The emergence of probability: a philosophical study of early ideas about

probability, induction and statistical inference. Cambridge University Press, Lon-

don, 1975.

[38] J. Halpern. A counterexample to the theorems of Cox and Fine. J. AI Research,

10:76–85, 1999.

[39] J. Hu and Y. Xiang. Learning belief networks in domains with recursively embedded

pseudo independent submodels. In D. Geiger and P. Shenoy, editors, Proc. 13th

BIBLIOGRAPHY 171

Conf. on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann,

1997.

[40] R.A. Jacobs, M.I. Jordan, S. Nowlan, and G.E. Hinton. Adaptive mixtures of local

experts. Neural Computation, 3(1):79–87, 1991.

[41] E.T. Jaynes. Probability theory: the logic of science. 1996. Unpublished MS; URL

ftp://bayes.wustl.edu/Jaynes.book/.

[42] F.V. Jensen. An introduction to Bayesian networks. Springer, New York, 1996.

[43] W.M. Kays and A.L. London. Compact Heat Exchangers. McGraw-Hill, New York,

1964. 2nd Edition.

[44] M. Kennel, H.D.I. Abarbanel, and J.J. Sidorowich. Prediction errors and local

Lyapunov exponents. URL http://xxx.lanl.gov/ps/chao-dyn/9403001, 1994.

[45] J.M. Keynes. A treatise on probability. Macmillan, London, 1921.

[46] U. Kjaerulff. HUGS: Combining exact inference and Gibbs sampling in junction

trees. In P. Besnard and S. Hanks, editors, Proc. 11th Conf. Uncertainty in Arti-

ficial Intelligence. San Francisco: Morgan Kaufmann, 1995.

[47] J. Kockelmans. Philosophy of science: the historical background. The Free Press,

New York, 1968.

[48] A. Kozlov and D. Koller. Nonuniform dynamic discretization in hybrid networks.

In D. Geiger and P. Shenoy, editors, Proc. 13th Conf. Uncertainty in Artificial

Intelligence. San Francisco: Morgan Kaufmann, 1997.

[49] A. Kozlov and J.P. Singh. Parallel implementations of probabilistic inference. IEEE

Computer, 29(12):33–40, 1996.

BIBLIOGRAPHY 172

[50] S. Kullback. Information theory and statistics. Dover Publications, Mineola, NY,

1968.

[51] E.J. Lemmon. Beginning logic. Hackett Publ. Co., Indianapolis, 1978.

[52] R.D. Levine and M. Tribus, editors. The maximum entropy formalism. MIT Press,

Cambridge, MA, 1978.

[53] D. MacKay. A practical Bayesian framework for backpropagation networks. Neural

Computation, 4:448–472, 1992.

[54] P. McCullagh and J.A. Nelder. Generalized linear models. Chapman and Hall, New

York, 1983.

[55] F.C. McQuiston and J.D. Parker. Heating, ventilating, and air conditioning: anal-

ysis and design. Wiley and Sons, New York, 1982.

[56] R. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,

1994.

[57] A.E. Nicholson and J.M. Brady. Dynamic belief networks for discrete monitoring.

IEEE Trans. Systems, Man, and Cybernetics, 24(11):1601ff, 1994.

[58] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. So-

ciety for Industrial and Applied Mathematics, Philadelphia, 1992.

[59] D.W. North. A tutorial introduction to decision theory. IEEE Trans. Systems

Science and Cybernetics, 4(3), 1968. Reprinted in Ref. [74].

[60] D. Nychka, S. Ellner, R. Gallant, and D. McCaffrey. Finding chaos in noisy systems.

J. Royal Statistical Society, Series B, 54(2):399–426, 1992.

[61] E. Ott. Chaos in dynamical systems. University Press, 1993.

BIBLIOGRAPHY 173

[62] A. Papoulis. Probability, random variables, and stochastic processes. McGraw-Hill,

New York, 1984.

[63] J. Pearl. Probabilistic reasoning in intelligent systems. San Francisco: Morgan

Kaufmann, 1988.

[64] J. Pearl. The new challenge: From a century of statistics to the age of causation.

Computing Science and Statistics, 29(2):415–423, 1997.

[65] D.M. Pennock. Polylogarithmic time parallel Bayesian inference. In G.F. Cooper

and S. Moral, editors, Proc. 14th Conf. Uncertainty in Artificial Intelligence. San

Francisco: Morgan Kaufmann, 1998.

[66] H. Poincaré. Science et Méthode. Flammarion, Paris, 1909.

[67] W. Poland. Decision analysis with continuous and discrete variables. PhD thesis,

Stanford University, Dept. of Engineering-Economic Systems, 1994.

[68] K. Popper. Logic of scientific discovery. Hutchinson, London, 1959.

[69] K. Popper. Conjectures and refutations. Routledge, London, 1963.

[70] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C.

Cambridge University Press, Cambridge, 1988.

[71] B. Ripley. Pattern recognition and neural networks. Cambridge U. Press, Cam-

bridge, UK, 1996.

[72] B. Russell. History of western philosophy. Simon & Schuster, New York, 1945.

[73] W.C. Salmon. The foundations of scientific inference. University of Pittsburgh

Press, 1967.

BIBLIOGRAPHY 174

[74] G. Shafer and J. Pearl, editors. Readings in uncertain reasoning. Morgan Kauf-

mann, San Mateo, CA, 1990.

[75] D. Sleator and R. Tarjan. Self-adjusting binary search trees. J. Assoc. Computing

Machinery, 32(3):652–686, 1985.

[76] P. Smyth, D. Heckerman, and M. Jordan. Probabilistic independence networks for

hidden Markov models. Microsoft Research technical report MSR-TR-9603, 1996.

[77] P. Snow. On the correctness and reasonableness of Cox’s theorems for finite do-

mains. Computational Intelligence, 14:452–459, 1998.

[78] I. Todhunter. A history of the mathematical theory of probability from the time of

Pascal to that of Laplace. Cambridge, 1865.

[79] G. von Leibniz. New essays on human understanding. Cambridge University Press,

1982. Translated by P. Remnant and J. Bennet from the edition of 1705.

[80] R. von Mises. Probability, statistics, and truth. George Allen and Unwin Ltd.,

London, 1957.

[81] R. von Mises. Mathematical theory of probability and statistics. Academic Press,

New York, 1964.

[82] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, Princeton, New Jersey, 2nd edition, 1947.

[83] A. Weigend and N. Gershenfeld, editors. Time series prediction, volume XV of

Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Reading,

MA, 1994.

[84] C.F.J. Wu. On the convergence properties of the EM algorithm. Annals of Statis-

tics, 11(1):95–103, 1983.

BIBLIOGRAPHY 175

[85] R. Wylie, R. Orchard, M. Halasz, and F. Dub. IDS: Improving aircraft fleet main-

tenance. In Proc. 14th Nat’l Conf. Innovative Applications of Artificial Intelligence

(IAAI-97), pages 1078–1085, 1997.

[86] Y. Xiang. A probabilistic framework for cooperative multi-agent distributed in-

terpretation and optimization of communication. Artificial Intelligence, 87(1):295–

342, 1996.

[87] Y. Xiang. Verification of DAG structures in cooperative belief network based multi-

agent systems. Networks, 31:183–191, 1998.

[88] E. Zalta, editor. Stanford Encyclopedia of Philosophy. 1998. ISSN 1095-5054. URL

http://plato.stanford.edu.

Appendix A

THE RISO BELIEF NETWORK GRAMMAR

This appendix describes the grammar of the belief network description language im-

plemented by riso. The riso grammar is divided into a grammar for the belief network

proper (Table A.1), a grammar for variables (Table A.2), and a grammar for conditional

distributions, an example of which is given in Table A.3. The grammar has been so

divided in order to make it easier to replace part of the grammar. Although is is unlikely

that someone will need to replace the grammar for the belief network proper, it will

commonly be useful to extend the grammar for variables with additional productions,

and for each new representation of a conditional distribution a new grammar analogous

to Table A.3 will be added. In the rest of this paper, “the grammar” without qualifica-

tion refers to the sum total of productions for the belief network proper, variables, and

distributions.

Some features of the riso grammar have been invented solely to improve the read-

ability of belief network descriptions. The grammar is organized so that all the descrip-

tive data pertaining to a variable are found together. (In some other belief network

formats, data which pertain to the same variable are found in different locations within

the description file — this is the case with the existing BNIF [3].) Grouping all of a

variable’s data together should make the description more comprehensible. Also, each

input token is labeled with the name of the parameter which it represents, if applicable;

this makes it easier to recall the meaning or purpose of a particular number or string.

The following notation is used in the grammars shown in the tables in this appendix.

[x|y] means x or y may occur, or neither, but not both. [x|y]! means either x or y occurs,

but not both. [x] means x may occur once or may not occur at all. [x]∗ means x occurs

zero or more times. [x]+ means x occurs one or more times. Nonterminals are shown

in italics, and terminals are set in a fixed-width font. Single-character terminals, such

THE RISO BELIEF NETWORK GRAMMAR 177

Table A.1: Productions of the grammar for the belief network proper; productions
for variables are shown in Table A.2, and productions for one type of distribution
are shown in Table A.3. Nonterminals are shown in italics. Terminals are shown in
fixed-width font. The nonterminals host, domain, and java-classname must follow the
rules established for Internet host names and domain names, and Java class names,
respectively. For clarity, single-character terminals are enclosed in quote marks.

1 belief-network ::= bn-type bn-name
[“{” [variable-description]+ “}”]

2 variable-description ::= variable-type variable-name
[“{” var-descript-data “}”]

3 bn-type ::= java-classname
4 variable-type ::= java-classname
5 bn-name ::= local-identifier
6 variable-name ::= [[host [“.” domain] [“:” port] “/”]

namespace-name “.”] local-identifier
7 namespace-name ::= identifier
8 local-identifier ::= identifier
9 identifier ::= nonnumeric-char

[nonnumeric-char | [“0”-“9”]!]*
10 nonnumeric-char ::= [“A”-“Z”“a”-“z”“@”“$”“-”“ ”“?”]!
11 port ::= unsigned-integer
12 unsigned-integer ::= [“0” | [[“1”-“9”]![“0”-“9”]*]]!

as curly braces and parentheses, are quoted to better distiguish them from the special

characters of the grammar. Of course, the quote marks wouldn’t appear in a belief

network description file.

A.1 Implementation details

The Java programming language was chosen to implement a parser for the riso gram-

mar. One feature of Java is particularly important for the parser: namely the class

loader, which makes it possible to load compiled Java code at run time.

Like the grammar shown in Tables A.1–A.8, the implementation of the parser is

divided into three parts. The parser for the grammar of the belief network proper is

implemented by a function of the class BeliefNetwork; the parser for the grammar for

variables is implemented by a function of the class Variable; and every class which

THE RISO BELIEF NETWORK GRAMMAR 178

Table A.2: Productions of the grammar for variables. The nonterminal distribution-
description is parsed by a method of a class, named as distribution-type, which inherits
from the abstract base type ConditionalDistribution.

1 var-descript-data ::= [type [continuous
| [discrete [states-list]]]!]
[parents [parents-list]]
[distribution distribution-type
[“{” distribution-description “}”]]

2 parents-list ::= “{” [simple-parent | prev-parent]+ “}”
3 simple-parent ::= variable-name
4 prev-parent ::= “prev[” [simple-parent | prev-parent] “]”
5 distribution-type ::= java-classname
6 states-list ::= “{” [quoted-string]+ “}”
7 quoted-string ::= “"” [“\01” - “\0377”]* “"”

Table A.3: Productions of the grammar for the conditional discrete distribution. The
class ConditionalDiscrete inherits from ConditionalDistribution.

1 cond-discrete ::= ConditionalDiscrete “{”
nparents unsigned-integer
parents-dimensions “{” [unsigned-integer]+ “}”
probabilities
“{” [float]+ “} }”

2 float ::= unsigned-integer [“.” unsigned-integer
[“e” [“-”|“+”] unsigned-integer]]

Table A.4: Productions of the grammar for the unconditional discrete distribution.

1 discrete ::= Discrete “{”
dimensions “{” [unsigned-integer]+ “}”
probabilities
“{” [float]+ “} }”

Table A.5: Productions of the grammar for the Gaussian distribution.

1 gaussian ::= Gaussian “{”
mean float std-deviation float “}”

THE RISO BELIEF NETWORK GRAMMAR 179

Table A.6: Productions of the grammar for an unconditional mixture distribution. The
nonterminal unconditional-distribution is a description of any type of unconditional
distribution, including mixture types. The “regularization gammas” are parameters
which come into play in maximum a posteriori estimation of mixing proportions from
observed data, and do not affect computations of posterior distributions in belief network
inferences.

1 mixture ::= Mixture “{”
ncomponents unsigned-integer
mixing-proportions “{” [float]+ “}”
[regularization-gammas “{” [float]+ “}”]
components
“{” [unconditional-distribution]+ “} }”

Table A.7: Productions of the grammar for monotone spline (Appendix D) distribution.
The five floating-point numbers in each node description are the abscissa of the node,
the ordinate, the slope at the abscissa, and two additional parameters describing the
second and third derivatives of the spline.

1 spline-density ::= SplineDensity “{”
“{” [node-description]+ “}”

2 node-description ::= float float float float float

Table A.8: Productions of the grammar for a density based on a regression model. The
nonterminal noise-model-description can be any unconditional distribution. The non-
terminal regression-model-description is the description of a model such as a squashing
network, harmonic function, or polynomial.

1 regression-density ::= RegressionDensity “{”
regression-model regression-model-description
noise-model noise-model-description “}”

THE RISO BELIEF NETWORK GRAMMAR 180

represents a conditional distribution will have a parser for its own grammar. This will

make it easier to extend the belief network grammar with additional attributes for

variables and additional types of distributions. A general approach for creating such

extensions is described in §A.1.4.

A.1.1 Temporal dependence

A primitive means of specifying temporal dependencies has been implemented in riso;

this allows the construction of Markov models and allied forms of belief networks. A

temporal dependence is specified in the parents list of a variable (Production 2 in

Table A.2). A temporal dependence is shown by a parent name of the form prev[X]

where X is the name of a variable in some belief network. Such references can be nested,

e.g., prev[prev[prev[Y]]] refers to the variable Y three time slices back.

A.1.2 Arbitrary continuous/discrete conditional densities

The Java type ConditionalDistribution is an abstract representation of a conditional

probability distribution.1 In order to be considered a concrete realization of the abstract

conditional distribution type, a class must implement at least these functions:

• A function which reads a description of the distribution from a string.

• A function which writes a description of the distribution to a string. The output

format should be the same as the input format.

• A function which computes the probability at a point, given values for any parent

variables there may be.

• A function which returns an effective support of the distribution, that is, an

interval which contains a mass of at least 1− ε, where ε is a small number.

1 To use the Java terminology, ConditionalDistribution is an interface.

THE RISO BELIEF NETWORK GRAMMAR 181

It is certainly possible that a distribution might implement additional functions; the

functions mentioned provide useful basic capabilities.

A variable may be described by any class which implements the ConditionalDis-

tribution functions; the class need not be part of the riso software. The name of

the class which describes the variable is specified before the name of the variable. Any

data needed to specify the distribution follows the variable’s name. By convention, the

format of this data follows the general belief network format: if non-empty, the data

is contained within curly braces; each attribute is specified by a single token, or by

multiple tokens contained within curly braces.

As an unconditional distribution is a particular type of conditional distribution, all

unconditional distributions are also derived from ConditionalDistribution. Thus

an unconditional distribution type-name may appear in place of the nonterminal

distribution-type in Table A.1. Such a type is only appropriate for a variable which

has no parents, of course.

A.1.3 Identifier scope rules

In the riso grammar, each belief network is allocated a namespace. Within each names-

pace, identifiers must be unique. However, the same local identifier may occur in two

different namespaces. To resolve an ambiguous reference, an identifier is qualified with

the “.” operator; an unqualified identifier is assumed to exist in the current namespace.

In the current implementation, namespaces cannot be nested, although a future version

of riso may allow nested namespaces.

A belief network file may contain more than one belief network. At least one of

the names of the belief networks in a file must coincide with the name of the file

which contains it. The extension of the filename is “riso”. For example, a file named

“sensor-diagnosis.riso” must contain a belief network named “sensor-diagnosis,”

and it may contain other belief networks as well.

A qualified variable name of the form some-bn.x refers to a variable in a belief

network on the same host as the network in which the reference occurs. If the belief

THE RISO BELIEF NETWORK GRAMMAR 182

network some-bn is not already loaded, then it is loaded from the file some-bn.riso on

the local filesystem, and the variable x is sought within it. A qualified variable name

of the form some-host/some-bn.x refers to a variable in a belief network on the same

or a different host. The belief network some-bn is located by connecting to a daemon

listening on a specified port on some-host, and x is sought within the belief network.

The hostname can be a fully-qualified symbolic Internet address, although one need

specify only enough to locate the host. The address can include a port number, e.g.

cedar.colorado.edu:2099.

A.1.4 Extending the class Variable

A new property of variables is introduced by deriving a new class from Variable. The

grammar shown in Table A.2 contains just a few basic properties for variables: name,

type (continuous or discrete), a list of parents, and the description of a conditional

distribution. These are enough to support some basic computations, but additional

properties will be needed for many purposes. New properties of variables can easily be

accomodated by the following scheme: To represent a variable with extended properties,

a new class is derived from Variable. The parser for the Variable class is applied to

the input stream, and control is transferred (by throwing an exception) to the parser for

the new class whenever a keyword unknown to Variable appears in the input stream.

This approach allows backward compatibility of types of variables, since a program

using the new variable class can read variables of the original class as well.

At present, it is planned that the class Variable will make certain assumptions

about default values for unspecified attributes. If the type is not specified, it is assumed

to be continuous. If no parents are specified, there are assumed to be none. If no

distribution is specified, none is assumed; probability calculations cannot be carried

out, but assessments of dependence and independence are still meaningful. A class

which extends Variable can substitute other default values for the ones mentioned

here.

THE RISO BELIEF NETWORK GRAMMAR 183

A.2 Additional remarks

There appear to be only two proposals for a belief network format not tied to any

particular software package, namely the Belief Network Interchange Format (BNIF) [3]

and the “Interchange Format” proposed by Fabio Cozman [21]. The latter is a simplified

version of the BNIF, and like the the BNIF, it is proposed as a public belief network

format to promote the exchange of belief networks, especially on the Internet.

Some of the features of the riso belief network grammar are implemented in some

way by an existing belief network format. Continuous variables are allowed by many

formats. Temporal dependencies are allowed by the Netica format [4]. Scope rules are

also mentioned in the Netica grammar, but there is a note (production 40 in the Netica

grammar) to the effect that the scope rules are not implemented. The “Bayesian infer-

ence using Gibbs sampling” (BUGS) language [35] does not allow definition of arbitrary

probability distributions, but it does provide a wide variety of built-in distributions.

Appendix B

RISO COMMUNICATIONS ARCHITECTURE

This appendix contains some notes on the manner in which belief networks com-

municate with each other, whether from one host to another or among belief networks

on a single host. The major communication problem is the transmission of π- and

λ-messages, but several other lesser problems are also handled by riso, such as locat-

ing belief networks by name, invalidating partial results, and downloading class files.

The details of the communication scheme are not too important, and in an “indus-

trial strength” implementation the communications architecture would likely be heavily

revised.

Communications medium. The riso communications medium is the Internet. Prob-

ability distributions and likelihood functions are passed as blocks of data over socket

connections. The sockets are handled by Java’s remote procedure call mechanism, called

Remote Method Invocation (RMI).

Belief network descriptions. riso belief network descriptions are plain text. A descrip-

tion can be loaded from the local filesystem or sent as a string across a socket.

The belief network registry. Names of belief networks and contexts are kept in a ex-

ternally accessible list called the “registry,” which is maintained by the RMI software.

Each host has a registry for the belief networks and contexts it is running. The registry

stores each name with a reference (essentially a pointer) to the corresponding program

object. From any other host, one can look up a name in the registry and obtain the

reference. The registry listens for incoming connections on a well-known socket, usually

1099.

Obtaining a remote reference. When a child wants to connect to a remote parent (i.e., a

parent in another belief network, on the same host or a different one), the child looks up

RISO COMMUNICATIONS ARCHITECTURE 185

the parent’s belief network name in the parent’s host’s registry, and uses the reference so

obtained. The required information can be obtained from the long form of the parent’s

name:

birch.colorado.edu:1088/test-monitor.status

Here the host is birch.colorado.edu, the port on which the registry listens is 1088, the

parent’s belief network is test-monitor, and the parent variable is status. If not specified,

the host defaults to the same host as the child, the port defaults to 1099, and the belief

network defaults to the same belief network as the child.

If the child locates the parent’s host but the parent belief network is not running,

the child requests that the parent belief network be loaded from the local filesystem;

this will causes any other belief networks which are farther upstream to be loaded as

well. This scheme is reminiscent of the resolution of function dependencies when loading

ordinary function libraries.

Function calls using a remote reference. The reference obtained from the registry can be

used to form function calls. The marshalling and unmarshalling of function arguments

in handled by RMI. Function arguments are converted into socket messages by the caller

and sent to the host holding the reference. The appropriate function is called, and the

return value is converted into a socket message and sent back to the caller.

This arrangement makes it possible to write programs which access already-running

belief networks, even on different hosts. Such “afterthought” programming can be used

to implement new operations (e.g., computation of entropy) that are not yet included

in riso.

Callbacks to remote programs. A program outside a belief network can request that it

be notified (by RMI) when the posterior or another quantity (π, λ, or a π- or λ-message)

is computed for a specified variable. The observer’s callback will also be called when

the posterior, etc., is cleared.

This scheme can be useful for “afterthought” programs which plot or display infor-

mation related to a variable, as the evidence for a variable changes one way or another.

RISO COMMUNICATIONS ARCHITECTURE 186

Invalidating partial results. Requests to set, clear, or change evidence within a belief

network cause special messages to propagate through the belief network and any other

belief networks reachable by d-connection to the modified variable. These messages are

“invalid π-message,” sent to child variables, and “invalid λ-message,” sent to parents.

Upon receipt of one of these messages, the corresponding message is cleared, and the

posterior of the variable is cleared. In keeping with the general “lazy inference” policy,

the posterior is not recomputed until there is a request for it.

Coping with lost connections. A belief network might die for any one of several reasons

— the host crashes, the context is killed, the name of the belief network is removed

from the registry, or the belief network is marked “stale.” If a child notices that its

parent is no longer reachable, it will try to reconnect to the parent. If the reconnection

fails, the child uses the parent’s prior in place of a π-message. (If no prior is available,

all queries on the child will simply fail.) Using the prior is equivalent to assuming there

is no evidence available from the parent.

On the other hand, if a parent notices that a child is unreachable, it simply removes

the child from its list of children. Since no evidence is available from the child, it is

effectively the same as a “non-informative” lambda message.

Downloading class files. The complete riso software need be installed at only one site.

(For now, that site is civil.colorado.edu.) Compiled code is downloaded to other sites as

follows. A very short application called the “stub” is copied to each site. The stub is

executed with the name of a riso program as an argument. The stub calls the “main”

function of the program, and to resolve this function call the runtime environment copies

the required code from the site on which it is located (called the “codebase”) over to

the stub’s host. Any further function calls are resolved in a similar manner, by copying

over the appropriate code from the codebase. riso belief networks may be composed

of types which are present on the codebase — when the belief network is instantiated,

the compiled code for any types not found on the stub host are downloaded.

This scheme has two substantial advantages. First, riso need be installed on only

one site, and other sites automatically use the most recent version of the software.

RISO COMMUNICATIONS ARCHITECTURE 187

(The code is not cached on the stub host, but must be copied anew every time a riso

program is executed.) Second, the stub can prohibit the riso program it executes

from performing sensitive operations, such as reading and writing the local filesystem.

This increases the security of the system, although to be remotely accessible, socket

connections must be allowed.

Parallel message requests. A certain amount of parallel computation is possible in riso’s

polytree inference algorithm. When a variable requires π-messages, riso sends out

requests for π-messages to all parents, then waits for the parents to send the messages.

Likewise, λ-message requests are sent to all children, then riso waits for the children

to send messages. If the parents are on different hosts, the messages can be computed

in parallel; likewise with the children.

Security. Little attention has been given to security. A major improvement would be

the use of encrypted socket transmissions.

The registry on a given host is accessible from any other host. Some form of autho-

rization and authentication should be enforced. Even a policy as primitive as that used

to protect web pages would help.

Appendix C

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS

For some distributions, the integrations necessary to calculate π- and λ-messages can

be carried out symbolically, and it is generally much faster to compute the symbolic

result than to compute a numerical approximation. For some other distributions, an

exact result is not known, but a close approximation can be computed symbolically.

riso checks the types of the partial results which are required for a given calculation,

and if there is a corresponding symbolic result in this collection, that result is returned

and a numerical approximation thereby avoided. The details of riso’s type-matching

scheme are discussed in §5.4.

In this appendix, we will review a catalog of symbolic results, both exact and ap-

proximate, for a variety of distributions. These results are organized by the type of the

result — posterior distribution, πX , λX , π-message, and λ-message. There are doubt-

less many other special cases which could be added to this collection; indeed, riso is

structured especially to make it easy to formulate and make use of results for additional

special cases.

For some kinds of calculations, there are helpers which accept mixtures of Gaussians,

but no helper which accepts Gaussian distributions. If some incoming partial results

are Gaussian, and no appropriate helper is found, each Gaussian is converted to a one-

component mixture and a helper is again sought. For example, there is no helper to

compute πX which accepts one π-message of type Gaussian and one of type mixture of

Gaussians; in this case, the Gaussian is converted to a one-component mixture and a

helper which accepts two π-messages of type mixture of Gaussians is invoked.

Some cases of general interest are not covered in this appendix. Particularly impor-

tant is the case of computing πX with a mixture of conditional Gaussians with mixture

of Gaussians π-messages. The mixture of conditional Gaussians distribution might be

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 189

derived from a mixture of multivariate Gaussians, as in the example of RH |T in §6.7.

The mixture of conditional Gaussians can also be considered a “mixture of experts”

architecture, with each “expert” a linear regression [40]. It turns out that computing

πX for this case is difficult because the mixture proportions vary from one region of the

parent space to another; this leads to algebraic difficulties. Given the expressive power

of the mixture of conditional Gaussians, an exact rule or fast approximation for πX and

other quantities would be very useful.

C.1 A note on post-processing of mixture distributions

Some of the formulas stated in the following sections return results which are mixture

distributions, often mixtures of Gaussians. Some heuristics are applied to these mixtures

to make them easier to handle in further calculations. The heuristics are (i) flattening,

(ii) pruning, and (iii) type conversions.

(i) Flatten. If any component pi of a mixture p is itself a mixture, remove pi from p

and add each component pij to p with mixing component αi · αij .

(ii) Prune. Remove any component with mixing proportion less than a threshold,

typically 0.0005. Ref. [6] describes a number of other pruning heuristics.

(iii) Convert types. If any component is a Gaussian with zero variance, replace it with

a Gaussian delta function. (These types are formally equivalent, but represented

in software by different types.)

C.2 Symbolic results for posterior distributions

The definition of the posterior distribution pX|e of a variable X conditioned on some

evidence e is given by Eq. 5.1.

pX|e(x) ∝ πX(x) λX(x) (C.1)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 190

EXACT RESULTS

C.2.1 Both πX and λX are discrete.

In this case the computation of the posterior is very easy. The posterior is computed

directly from the definition, with the constant of proportionality equal to

#X−1∑

x=0

πX(x) λX(x) (C.2)

where #X is the cardinality (assumed finite) of X.

C.2.2 Discrete πX and arbitrary λX .

This case covers likelihood functions of a discrete variable which are expressed as inte-

grals or other general functions, and not as look-up tables. The computation is carried

out just as in the preceding section.

C.2.3 Both πX and λX are Gaussian.

The posterior in this case is also Gaussian, with variance

σ2
X = 1/(1/σ2

π + 1/σ2
λ) (C.3)

and mean

µX =
(

µπ

σ2
π

+
µλ

σ2
λ

)
× σ2

X (C.4)

with obvious notation.

C.2.4 Both πX and λX are mixtures of Gaussians.

The computation described in §C.4.3 is carried out with πX and λX as the multiplicands.

The result is pruned by throwing out components with a mass which is smaller than a

threshold, and the pruned mixture is returned.

APPROXIMATE RESULTS

C.2.5 Both πX and λX are general mixtures.

First πX and λX are flattened. Let πX [i], i = 1, . . . , nπ and λX [j], j = 1, . . . , nλ be

the components of πX and λX (after flattening). The result is a mixture with nπ · nλ

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 191

components. Each component of the result is computed according to these rules:

• If λX [j] is noninformative, the result component is π[i].

• If π[i] and λ[j] are both Gaussian, the result component is a Gaussian with mean

and variance given by Eqs. C.4 and C.3.

• If neither of the preceding two cases apply, the result component is a spline density

approximation, constructed according to the description in §C.2.6.

In each case, the mass of the result component is the product of the masses assigned to

πX [i] and λX [j].

C.2.6 Both πX and λX are arbitrary.

A monotone cublic spline (Appendix D) representation of the posterior is constructed.

The support of the spline is taken as the intersection of the effective support of πX and

λX , or as the effective support of πX alone if the effective support of λX cannot be deter-

mined. The number of knots is determined by computing, with an adaptive quadrature

algorithm (QAGS, in quadpack at www.netlib.org), a numerical approximation of

the normalizing integral ∫

x∈I
πX(x) λX(x) dx

where I is the support of the spline; the numerical calculation will require the evaluation

of the integrand at some number of points in I, and when the calculation is complete

these are taken as the knots of the spline. The spline is normalized so that its integral

is unity, and the approximation is assumed to be zero outside of I.

C.3 Symbolic results for πX calculations

The definition of πX is given by Eq. 5.2.

πX(x) = pX|e+
X

(x)

=
∫

du1 · · ·
∫

dum qX(x, u1, . . . , um) πU1,X(u1) · · · πUm,X(um) (C.5)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 192

This integration can be carried out for a number of special cases, including several of

the form “the distribution of some function of such-and-such variables is thus.”

EXACT RESULTS

C.3.1 Identity with one arbitrary parent.

In this case the conditional distribution of the child X is a delta function placed on the

given value of the parent U . (Such a distribution is useful for constructing “shadow”

variables in a belief network.) Thus we have

πX(x) = πU,X(x) (C.6)

C.3.2 Sum of Gaussian variables.

The sum of Gaussian variables is a special case of a linear combination of Gaussian

variables, as described in §C.3.4, taking the coefficients a1, . . . , am all equal to 1.

C.3.3 Sum of mixtures of Gaussian variables.

The sum of variables with mixture of Gaussians distributions is a special case of the

linear combination described in §C.3.5, taking the coefficients a1, . . . , am all equal to 1.

C.3.4 Linear combination of Gaussian variables.

A linear combination

a1 X1 + a2 X2 + · · ·+ am Xm (C.7)

of Gaussian variables is again a Gaussian variable, with mean

a1 µ1 + a2 µ2 + · · ·+ am µm (C.8)

and variance

a2
1 σ2

1 + a2
2 σ2

2 + · · ·+ a2
m σ2

m (C.9)

A sum of Gaussian variables (§C.3.2) is a special case.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 193

C.3.5 Linear combination of mixtures of Gaussian variables.

The distribution of a linear combination (Eq. C.7) of variables with mixtures of Gaus-

sians distributions is again a mixture of Gaussians. Let the mixing proportion, mean,

and variance of the k’th component of the j’th π-message be denoted αjk, µjk, and σ2
jk,

respectively. Let nj denote the number of components of the j’th π-message. Then the

result is a mixture of Gaussians with n1n2 · · ·nm components, where m is the number

of parents, each component corresponding to a combination (k1, k2, . . . , km) of compo-

nents of the π-messages. The mixing proportion of the component corresponding to

each such combination is the product of mixing proportions,

α1,k1 · α2,k2 · · ·αm,km (C.10)

and the mean of the component is a linear combination of the means,

a1 µ1,k1 + a2 µ2,k2 + · · ·+ am µm,km (C.11)

and the variance of the component is a linear combination of the variances,

a2
1 σ2

1,k1
+ a2

2 σ2
2,k2

+ · · ·+ a2
m σ2

m,km
(C.12)

C.3.6 Product of lognormal variables.

As the sum of Gaussian variables is again Gaussian, so the product of lognormal vari-

ables is again lognormal. Let µ1, . . . , µm and σ2
1, . . . , σ

2
m denote the parameters of the

π-messages. Then the product has the parameters

µ = µ1 + · · ·+ µm, (C.13)

and

σ2 = σ2
1 + · · ·+ σ2

m (C.14)

C.3.7 Ratio of lognormal variables.

As the difference of Gaussian variables is again Gaussian, so the ratio of lognormal

variables is again lognormal. A ratio variable has two parents; it is assumed the first is

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 194

the numerator and the second is the denominator. Let µ1, σ1 be the parameters of the

numerator, and let µ2, σ2 be the parameters of the denominator. Then the ratio has

the parameters

µ = µ1 − µ2 (C.15)

and

σ2 = σ2
1 + σ2

2 (C.16)

C.3.8 Maximum of arbitrary distributions.

The cumulative distribution function (c.d.f.) of the maximum of some set of distribu-

tions is just the product of the c.d.f. of each distribution in the set, and the density

function is just the derivative of that product. So we have for the c.d.f. of πX

π-cdfX(x) = π-cdfU1,X(x) · · ·π-cdfUm,X(x) (C.17)

where π-cdfUk,X(x) is written in place of
∫ x
−∞ πUk,X(t) dt. For the density, we have

πX(x) =
m∑

j=1

πUj ,X(x)
m∏

k=1
k 6=j

π-cdfUk,X(x) (C.18)

C.3.9 Minimum of arbitrary distributions.

The complement of the c.d.f. of the minimum of a set of distributions is the product of

the complement of the c.d.f. of each distribution. So we have for the c.d.f. of πX

π-cdfX(x) = 1− (1− π-cdfU1,X(x)) · · · (1− π-cdfUm,X(x)) (C.19)

and for the density,

πX(c) =
m∑

j=1

πUj ,X(x)
m∏

k=1
k 6=j

(1− π-cdfUk,X(x)) (C.20)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 195

C.3.10 Disjunction of binary variables.

The probability of a disjunction of independent binary variables is conveniently com-

puted by noting that

Pr(S1 ∨ S2) = Pr(S1) + Pr(S2)− Pr(S1) Pr(S2)

= Pr(S2) + Pr(S1) · (1− Pr(S2)) (C.21)

from which we obtain the recursive formula

Pr(S1 ∨ S2 ∨ · · · ∨ Sm) = Pr(Sm) + Pr(S1 ∨ S2 ∨ · · · ∨ Sm−1) (1− Pr(Sm))

= Pr(Sm) + pm−1 · (1− Pr(Sm)) (C.22)

writing pk for Pr(S1 ∨ · · · ∨ Sk). Taking p0 = 0, we can compute p1, p2, . . . , pm in turn,

and return pm as the desired result.

This formula can be applied to discrete variables with more than two states by

identifying the zero’th state as 0 and lumping all the other states together in 1. The

result is still binary.

C.3.11 Exclusive-or of binary variables.

To obtain the probability of the exclusive-or of binary variables, express the exclusive-or

in terms of conjunction and disjunction as follows:

Pr(S1 ⊕ S2) = Pr((S1 ∧ ¬S2) ∨ (¬S1 ∧ S2))

= Pr(S1 ∧ ¬S2) + Pr(¬S1 ∧ S2)

= Pr(S1)(1− Pr(S2)) + (1− Pr(S1)) Pr(S2)

= Pr(S2) + Pr(S1)(1− 2Pr(S2)) (C.23)

The second equality follows from the first because (S1 ∧¬S2)∧ (¬S1 ∧S2) is identically

false. Since exclusive-or is associative, we can compute S1 ⊕ S2 ⊕ · · · ⊕ Sm recursively,

with

Pr(S1 ⊕ S2 ⊕ · · · ⊕ Sm) = Pr(Sm) + Pr(S1 ⊕ · · · ⊕ Sm−1)(1− 2Pr(Sm))(C.24)

= Pr(Sm) + pm−1 · (1− 2 Pr(Sm)) (C.25)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 196

writing pk for Pr(S1⊕ · · · ⊕ Sk). Taking p0 = 0, we compute p1, p2, . . . , pm in turn, and

return pm as the desired result.

This formula can be applied to discrete variables with more than two states by

identifying the zero’th state as 0 and lumping all the other states together in 1. The

result is still binary.

C.3.12 “Exactly one” of binary variables.

The proposition “exactly one of S1, . . . , Sm” can be expressed as

exactly one of S1, . . . , Sm =
m∨

j=1

Sj ∧
m∧

k=1
k 6=j

¬Sk (C.26)

Since the terms in the disjunction are mutually exclusive, and the terms in the con-

junction are assumed independent, the probability of “exactly one of. . . ” is a simple

calculation.

Pr(exactly one of S1, . . . , Sm) =
m∑

j=1

Pr(Sj)
m∏

k=1
k 6=j

(1− Pr(Sk)) (C.27)

The Elvis Presley belief network described in Chapter 1 makes use of a variable which

is “exactly one” of several binary variables.

C.3.13 Indexed distribution with discrete π-messages.

An “indexed distribution” is the name given (in riso) to a conditional distribution with

some discrete parents and some continuous parents. One can imagine that the discrete

parents index a set of distributions conditioned on the continuous parents alone. The

child distributions can have any types.

As a special case, when all the parents are discrete, the indexed distributions are

unconditional. Then πX for the child is just a mixture distribution, with each component

corresponding to one of the indexed distributions, and its mixing proportion equal to

a product of probabilities from the π-messages. Letting ik be an index for the k’th

π-message, and letting Q be the set of child distributions, then the mixture components

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 197

are

Q[i1, . . . , im] (C.28)

and the mixing proportions are

πU1,X [i1]× · · · × πUm,X [im] (C.29)

Since the child distributions need not all have the same type, this mixture is not gen-

erally any common type such as a mixture of Gaussians.

C.3.14 Conditional Gaussian with Gaussian π-messages.

If the child has a conditional Gaussian distribution with its conditional mean a linear

combination of the parent values u1, . . . , um,

b + a1u1 + a2u2 + · · ·+ amum

and constant conditional variance σ2, then πX is a Gaussian distribution with mean

b + a1µ1 + a2µ2 + · · ·+ amµm (C.30)

and variance

σ2 + a2
1σ

2
1 + a2

2σ
2
2 + · · ·+ a2

mσ2
m (C.31)

Here the mean and variance of the k’th π-message are denoted µk and σ2
k, respectively.

C.3.15 Conditional discrete with discrete parents.

In this case, πX is computed directly from the definition (Eq. 5.2 or C.5). The integrals

are replaced by summations:

πX(j) =
∑

i1

· · ·
∑

im

qX(j, i1, . . . , im) πU1,X(i1) · · · πUm,X(im) (C.32)

where qX is written as a shorthand for pX|U1,...,Um
, the index j ranges from 0 to #X−1,

and the indices ik ranges from 0 to #Uk − 1.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 198

C.3.16 [*] Autoregressive model with Gaussian parent.

If the π-messages for ρ and σ are not delta functions, so the problem doesn’t fall into

the special case, the general πX handler described in §C.3.26 is invoked.

APPROXIMATE RESULTS

C.3.17 Sum of arbitrary distributions.

In general, the density of a sum of variables is the convolution of the densities of the

summands,

px+y(t) =
∫ ∞

−∞
px(t− u) py(u) du

The convolution is approximated by discretizing the summands, computing the discrete

Fourier transform of each variable, multiplying the Fourier transforms, and computing

the inverse transform of the result. Especially if there are more than two summands,

this is generally much faster than directly computing the convolution integral, since

there are “fast” algorithms (see, e.g., Ref. [10]) which compute the discrete Fourier

transform in time proportional to N log N , where N is the number of sampling points.

A trick (described in Figure 10-9 of Ref. [10]) is employed to compute the discrete

Fourier transform of two summands at a time.

Every summand must be discretized with the same step size; changing the step size

is equivalent to rescaling a variable, and the sum of rescaled variables is not related in

any obvious way to the sum of the corresponding unscaled variables. The discretization

is constructed by finding an effective support for each summand, and setting step size

according to the support interval which is shortest; this ensures that all summands are

sampled adequately. The number of grid points for each summand is

Ni =
⌈

bi − ai

∆x

⌉

where ai and bi are the left and right endpoints of the effective support of the i’th

summand, and ∆x is the step size (same for all summands). The number of grid points

in the discrete Fourier transform of the sum is equal to

N1 + N2 + · · ·+ Nm − (m− 1)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 199

which could be large if some summand has an effective support which is much longer

than the shortest effective support of any summand.

The discretization of the i’th summand is taken as

pij = pi(ai + j∆x), j = 0, . . . , Ni − 1

That is, each density is simply sampled at the grid points. It might be more accurate to

let pij equal the mass of the density function pi on the interval [ai+j∆x, ai+(j+1)∆x],

but that has not yet been implemented in riso.

The result of the discrete convolution is represented as a continuous density function

by constructing a monotone cubic spline function (Appendix D) which has knots at the

grid points. The function values are scaled so that the spline integrates to unity on the

interval [aΣ, bΣ], where aΣ and bΣ are the endpoints of the support of the sum,

aΣ =
m∑

i=1

ai, bΣ =
m∑

i=1

bi

C.3.18 Product of distributions supported on (0,+∞).

This case is handled by taking the logarithm of each of the multiplicands, computing

the sum of the log-transformed variables, and taking the exponential of the result. The

sum is computed as described in §C.3.17.

The density of a log-transformed variable is just

plog x(t) = px(exp t) exp t

while the density of an exponential-transformed variable is

pexp x(t) = px(log t)
1
t

Each multiplicand is log-transformed, then discretized. The convolution of the log-

transformed multiplicands is computed, and a discrete approximation (with non-uniform

step size) to the density of the product is then

xi = exp yi, pi = qi/xi

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 200

where yi is a grid point in the log-transform space and qi is the corresponding density

of the summation of log-transformed variables.

A monotone cubic spline (Appendix D) is constructed from the pairs (xi, pi).

C.3.19 Ratio of distributions supported on (0,+∞).

We take the logarithm of the numerator and denominator. The log-transformed denomi-

nator is reflected about the origin before convolving with the log-transformed numerator.

Then the result is transformed back to the original units. The details are just the same

as in §C.3.18.

C.3.20 Functional relation with arbitrary π-messages.

The number of π-messages which are not delta functions is counted. The action taken

depends on the number of non-delta π-messages.

All π-messages are delta functions. In this case, the integral (Eq. C.5) collapses to a

function evaluation:

πX(x) = δ(x− F (u1, . . . , um)) (C.33)

with each uk the support point of the corresponding delta function πUk,X .

One π-message is non-delta. If there is exactly one π-message which is non-delta, the

integral (Eq. C.5) becomes a one-dimensional integration. Without loss of generality,

assume the non-delta π-message is πU1,X . The functional relation is effectively a function

of one variable, f(u) = F (u, u2, . . . , um). So the integral to be evaluated is
∫

δ(v − f(u)) πU1,X(v) dv (C.34)

This can be evaluated by a standard change of variables [62, § 5.2] to yield

πX(x) =
∑

i

πU1,X(ui)
|f ′(ui)| (C.35)

where the summation is over the preimages ui of x, that is, x = f(ui) for each i. The

preimages ui are found by evaluating f at a large number of points in the effective

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 201

support S of πU1,X and looking for sign changes of x − f(u); an interval containing a

sign change is refined by bisection to yield an approximation to the preimage ui.

Eq. C.35 is evaluated at a number of points in the image f(S) of the effective support

S of πU1,X , and a spline approximation is constructed.

More than one π-message is non-delta. If there are N non-delta π-messages with N >

1, the integration (Eq. C.5) is expressed as an (N − 1)-dimensional integration, with

Eq. C.35 as the integrand. To make the integration easier, the π-message with greatest

variance is handled by Eq. C.35; without loss of generality, let us assume that it is

πU1,X . Thus the required computation is

πX(x) =
∫

dU2 · · ·
∫

dUm πU2,X(U2) · · ·πUm,X

∑

i

πU1,X(u1,i)
| ∂F
∂U1

(u1,i, U2, . . . , Um)| (C.36)

where the preimages of x, for given U2, . . . , Um, are denoted u1,i. These preimages are

found as described under the heading “One π-message is non-delta,” above; the search

is still one-dimensional. The integration over U2, . . . , Um is carried out by quasi Monte

Carlo (§5.6) if N > 2, and by QAGS if N = 2.

C.3.21 Regression model with Gaussian inputs.

A regression model, in riso, is a real function of one or more inputs, with some constant-

variance noise assumed on the output. The distribution of the output is approximated

by linearizing the function at (µ1, . . . , µm),

F (x) ≈ F (µ) +∇F (µ) · (x− µ)

where µi is the mean of the i’th π-message; for brevity, x is written for (x1, . . . , xm),

likewise µ for (µ1, . . . , µm). Then an exact expression for the distribution of the lin-

earized output is computed. Let F (x1, . . . , xm) be the regression function, let σ2
F be

the noise variance, and let µi, σ
2
i be the parameters of the i’th π-message. Then the

distribution of the linearized output is Gaussian, with mean

F (µ1, . . . , µm) (C.37)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 202

and variance

σ2
F +

m∑

i=1

(
∂F

∂xi
(µi)

)2

σ2
i (C.38)

This is just a special case of the well-known result that for x Gaussian-distribution with

mean µ and covariance matrix Σ, the matrix product Bx is again Gaussian, with mean

Bµ and covariance BΣB′. See, for example, Chapter VIII of Ref. [81].

If the function F is strongly nonlinear, it would be more accurate to replace each

Gaussian bump in the input with a Gaussian mixture of perhaps 3, 5, or many compo-

nents. The components would be spread over the effective support of the bump, perhaps

placed at µ, µ± σ, µ± 2σ, etc. The resulting approximation of the output distribution

would be a Gaussian mixture which better captures the nonlinear effect of F . However,

this idea has not yet been implemented in riso.

C.3.22 Regression model with mixtures of Gaussians inputs.

The regression function is linearized as in §C.3.21, and an exact result is calculated for

the linearized function. The distribution of the output is now a Gaussian mixture, with

one component for each combination of the components of the input distributions, so

there are n1 · n2 · · ·nm altogether. The mixing proportion of each component is

α1,i1 · α2,i2 · · ·αm,im (C.39)

where the index ij ranges over the components of the j’th π-message. The mean of each

component is

F (µ1,i1 , µ2,i2 , . . . , µm,im) (C.40)

and the corresponding variance is

σ2
F +

m∑

j=1

(
∂F

∂xj
(µj,ij)

)2

σ2
j (C.41)

Note that this approximation requires one linearization per component in the output

distribution.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 203

C.3.23 Regression model with arbitrary inputs.

If some incoming π-messages are not Gaussian or mixtures of Gaussians, those messages

are approximated as mixtures of Gaussians, and the formulas in §C.3.22 are applied.

The mixture of Gaussian approximations are computed by the algorithm described in

§5.5.

C.3.24 Classifier with arbitrary inputs.

A classifier is a conditional probability model for a discrete child with discrete or contin-

uous parents. For this type of model, πX is computed directly from its definition; this

requires an m-dimensional numerical integration. If m > 1, the integration algorithm

is a quasi Monte Carlo algorithm; if m = 1, the integration algorithm is QAGS, an

adaptive quadrature algorithm based on a 21-point Gauss-Kronrod rule. See §5.6 for

details on integration algorithms used in riso.

Conceptually, it may be preferable to specify the discrete variable as a parent, and

the other variables as children, and to use the classifier to compute λX instead of πX .

However, that scheme has not been implemented in riso.

C.3.25 Indexed distribution with arbitrary parents.

In this case, πX is a mixture, with the number of components equal to the number of

combinations of states of the index variables. Let the n index variables be Uj1 , . . . , Ujn .

For each combination (ij1 , . . . , ijn) of index variables, there is one mixture component,

with weight equal to the product of probabilities of the index variables,

πUj1
,X [ij1]× · · · × πUjn ,X [ijn] (C.42)

If the distribution qX of the child X given the continuous parents U \ {Uj1 , . . . , Ujn} is

unconditional, then qX is the mixture component. Otherwise, a πX helper is sought,

according to the types of the π-messages associated with the continuous parents, and

the πX computed by the helper is the mixture component.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 204

C.3.26 Arbitrary conditional distribution with arbitrary parents.

In this case, no specific results are known, so πX is computed directly from the definition

(Eq. C.5). See §5.6 for details on integration algorithms.

C.4 Symbolic results for λX calculations

The definition of λX is given as Eq. 5.3.

λX(x) ∝ pe−X |X(x) =
n∏

j=1

λYj ,X(x) (C.43)

EXACT RESULTS

C.4.1 All λ-messages are discrete.

In this case λX is again discrete. Let pij , j = 0, 1, 2, . . . , #X − 1, denote the probability

table of the i’th λ-messages. Then the j’th element of the λX probability table is just

λX(j) ∝ p1,j · p2,j · · · pm,j (C.44)

In this equation, the constant of proportionality is such that
∑

j λX(j) = 1. Strictly

speaking, this normalization is optional, since likelihood functions are determined only

up to a constant factor.

C.4.2 All λ-messages are Gaussian.

Let µi, σ
2
i be the parameters of the λ-messages. Let

A =
m∑

i=1

1
σ2

i

(C.45)

B =
m∑

i=1

µi

σ2
i

(C.46)

Then the λ-message is again Gaussian, with mean B/A and variance 1/A.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 205

C.4.3 All λ-messages are mixtures of Gaussians.

Let p1, . . . , pn be mixture distributions, each of which has some mixing parameters αkl

and component distributions pkl. The density of each distribution is given by

pk(x) =
Nk∑

l=1

αkl pkl(x) (C.47)

Then the product of these distributions is

n∏

k=1

pk(x) =
n∏

k=1

Nk∑

l=1

αkl pkl(x)

=
N1∑

l1=1

· · ·
Nn∑

ln=1

n∏

k=1

αk,lk pk,lk(x) (C.48)

This shows that the result is again a mixture, with the number of components equal to

the product N1 · · ·Nn of the numbers of components of each multiplicand, and mixing

parameters equal to products α1,l1 · · ·αn,ln of the mixing parameters of the multipli-

cands. Each product p1,l1(x) · · · pn,ln(x) is evaluated according to Eqs. C.45 and C.46.

C.4.4 All λ-messages are general mixtures.

λ-messages which are mixtures may contain noninformative components, which origi-

nate from conditional distributions which are unconditional for some values of indexing

parents. For example, a typical model for a malfunctioning temperature sensor assumes

that the sensor output is not a function of the actual temperature.

If all λ-messages are general mixtures, then λX is also a general mixture. There is

one component of λX for each combination of components of the λ-messages, and the

type of the λX component depends on the types of the components of the λ-messages.

A few special cases are detected, and one general case covers all other combinations.

In the following, let ni be the number of components of λYi,X , the i’th λ-message. Let

(j1, . . . , jm) index a combination of components of the λ-messages, with 1 ≤ ji ≤ ni,

and let λYi,X [ji] be the ji’th component of the i’th λ-message.

(i) If all the components λYi,X [ji] are noninformative, then the component of λX is

also noninformative.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 206

(ii) If all components λYi,X [ji] are noninformative except one, the component of λX

is a copy of that sole informative component.

(iii) If all informative components λYi,X [ji] are Gaussian, the component of λX is also

Gaussian, with mean and variance as stated in §C.4.2.

(iv) If none of the first three cases applies, the component of λX is represented explic-

itly as a product of the components λYi,X [ji]. That is, a copy of each component

is stored, and when the density function of the result needs to be computed, the

density function of each λYi,X [ji] is computed and the product is returned. It

is possible that storing a numerical approximation to the product (e.g., a spline

approximation) might be a better idea.

As elsewhere, it would be a good idea to develop formulas for additional special cases

— in this context, special cases of products of density functions.

APPROXIMATE RESULTS

C.4.5 All λ-messages are arbitrary distributions.

If X is discrete, the range over which λX is defined is known: the range is just

0, 1, 2, . . . ,#X − 1. To simplify further calculations, λX is evaluated for each value

in its range, and the table of probability values so generated is stored, so that no

further evaluations are needed. If λX becomes a partial result in another calculation

(e.g., a posterior or π-message calculation), λX is represented in the calculation by the

probability table.

If X is continuous, no evaluation or approximation is attempted, and λX is explicitly

represented as a product of λ-messages. That is, a list of the messages is kept, and when

λX needs to be evaluated, each λ-message is evaluated and the product of the results

is returned.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 207

C.5 Symbolic results for π-messages

The definition of the π-message πX,Yk
from a parent X to its child Yk is given by Eq. 5.4.

πX,Yk
(x) = pX|e\e−X,Y

(x) ∝ πX(x)
n∏

j=1

j 6=k

λYj ,X(x) (C.49)

From this definition one can see that a π-message is identical to the calculation of the

posterior, with one of the λ-messages omitted. Thus we need only compute a likelihood

function using one of the rules in §C.4 (omitting one λ-message), and then compute the

product of πX with the likelihood using a rule from §C.2.

C.6 Symbolic results for λ-messages

The definition of the λ-message λX,Uk
from a child X to its parent Uk is given by Eq. 5.5.

λX,Uk
(uk) = pe\e+

X,Uk
|Uk

(uk)

∝
∫

dx

∫
du1 · · ·

∫
duk−1

∫
duk+1 · · ·

∫
dum

× λX(x) qX(x, u1, . . . , um)
m∏

j=1

j 6=k

πUj ,X(uj) (C.50)

EXACT RESULTS

C.6.1 Conditional discrete with discrete likelihood and discrete π-messages.

The result is a discrete probability distribution. A table of probabilities is computed

by direct summation, with the i’th element

λX,Uk
[i] ∝

#X−1∑

jX=0

λX [jX]
#U1−1∑

j1=0

· · ·
#Uk−1−1∑

jk−1=0

#Uk+1−1∑

jk+1=0

· · ·
#Um−1∑

jm=0

qX [jX , j1, . . . , jm]
m∏

l=1
l 6=k

πUl,X [jl]

(C.51)

The constant of proportionality is such that
∑

i λX,Uk
[i] = 1. Strictly speaking, this

normalization is optional, since likelihood functions are determined only up to a constant

factor.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 208

C.6.2 Conditional Gaussian with Gaussian likelihood and Gaussian π-messages.

The result is a Gaussian distribution. Suppose the conditional distribution of X given

its parents U = (U1, . . . , Um) has conditional mean given by

µX|U = A · U + B,

and constant conditional variance σ2
X|U . Let

µX,Uk
=

µλ −B

A[k]
−

∑
i=1
i6=k

A[i]
A[k]

µi (C.52)

σX,Uk
=

σ2
λ + σ2

X|U
A[k]2

+
∑
i=1
i6=k

A[i]2

A[k]2
σ2

i (C.53)

Then the λ-message is a Gaussian distribution with mean µX,Uk and variance σ2
X,Uk

.

C.6.3 Conditional discrete with discrete likelihood and no π-messages.

The result is a discrete probability distribution. A table of probabilities is computed

by direct summation, with the i’th element

λX,Uk
[i] ∝

#X−1∑

jX=0

λX [jX] qX [jX , i] (C.54)

The constant of proportionality is such that
∑

i λX,Uk
[i] = 1.

C.6.4 [*] Autoregressive model with Gaussian likelihood and Gaussian π-messages.

The present (September, 1999) implementation of riso can handle a special case: Gaus-

sian likelihood, and the π-messages for the correlation coefficient and the variance of

additive noise are delta functions. In this special case, the λ-message is a Gaussian,

with mean
µλ

ρ
(C.55)

and variance
σ2

λ + σ2

ρ2
(C.56)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 209

where ρ and σ are the correlation and the noise variance, respectively, and µλ and σλ

are the mean and variance of λX .

If the π-messages are not delta functions, so the problem doesn’t fall into the special

case, the general λ-message handler described in §C.6.10 is invoked.

C.6.5 Indexed distribution, variable is evidence, and no π-messages.

In this case, there is exactly one parent, say I, and I is discrete, so the λ-message is

discrete. A table is constructed, with the i’th element equal to

pX|I(x, i) (C.57)

where x denotes the evidence value and i ranges from 0 to #I − 1.

C.6.6 Indexed distribution, variable is evidence, and discrete π-messages.

This case is very prevalent, as the case of a measured sensor variable with one parent

being the sensor status and the other parent being the “actual” variable falls under this

heading.

This case is subdivided into two subcases, depending on the types of the components

of the indexed distribution. Let us write the conditional distribution as pX|U,I , with U

the continuous parent and I the discrete parent.

(i) If all components of pX|U,I are conditional Gaussian, the λ-message is a mixture of

Gaussians. Suppose the i’th component of pX|U,I has conditional mean Aiu + Bi,

where i = 0, . . . , N − 1 is the value of the discrete parent I, and u is the value of

the continuous parent U , and the conditional variance is σ2
i . Then there are N

components in the λ-message, and the i’th component has mean and variance

x−Bi

Ai
(C.58)

σ2
i

A2
i

(C.59)

and mixing proportion
πI,X [i]

Ai
(C.60)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 210

(ii) If some component of pX|U,I is not a conditional Gaussian, the λ-message is a

general mixture. Let N be the number of components of pX|U,I . Then the λ-

message has N components, and the i’th component has one of three types.

– If the i’th component of pX|U,I is conditional Gaussian, the corresponding

component of the λ-message is Gaussian, as described in Item (i) above.

– If the i’th component of pX|U,I does not depend on U , the corresponding

component of the λ-message is a constant function, with value 1, and the

mixing proportion for this component is equal to

πI,X [i] pX|U,I [i](x) (C.61)

– Otherwise, the i’th component of pX|U,I is a general conditional distribution,

and the corresponding component of the λ-message is a representation of the

integral ∫
qX(x, u, i) du (C.62)

with mixing proportion

πI,X [i] (C.63)

In either case (i) or (ii), before returning the mixture, the mixing proportions are

normalized to sum to 1; this step is not strictly necessary.

APPROXIMATE RESULTS

C.6.7 Conditional discrete with arbitrary likelihood and no π-messages.

If X is discrete, the range over which the λ-message is defined is known: the range is

just 0, 1, 2, . . . ,#X − 1. To simplify further calculations, the λ-message is evaluated for

each value in its range, and the table of probability values so generated is stored, so that

no further evaluations are needed. The λ-message is represented in further calculations

(e.g., a π-message) by the probability table.

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 211

C.6.8 Functional relation with arbitrary likelihood and π-messages

In this case, the λ-message can usefully be represented as an integration over a predictive

distribution:

λX,Uk
(ũk) ∝

∫
dx

∫
du1 · · ·

∫
dum

× λX(x) qX(x, u1, . . . , uk−1, ũk, uk+1, . . . , um) δuk
(ũk)

m∏
j=1

j 6=k

πUj ,X(uj)

=
∫

dx λX(x) π̃X(x, ũk) (C.64)

denoting the made-up predictive distribution as π̃X , with

π̃X(x, ũk) =
∫

du1 · · ·
∫

dumqX(x, u1, . . . , uk−1, ũk, uk+1, . . . , um) δuk
(ũk)

m∏
j=1

j 6=k

πUj ,X(uj) (C.65)

Eq. C.65 is calculated by substituting a delta function over the parent to which the λ-

message is being sent in place of the π-message from that parent; §C.3.20 gives rules for

handling this calculation. Note that π̃X depends on the argument ũk of the λ-message,

so for every ũk the predictive distribution is recomputed. The outer integration over X

in Eq. C.64 is carried out by the algorithm QAGS from quadpack.

C.6.9 Arbitrary conditional distribution, variable is evidence, arbitrary π-messages.

In this case, λX is a delta function, positioned on the value x, so the integral which

defines the λ-message reduces to

λx,uk
(ũk) ∝

∫
du1 · · ·

∫
duk−1

∫
duk+1 · · ·

∫
dum

× qx(x, u1, . . . , uk−1, ũk, uk+1, . . . , um)
m∏

j=1

j 6=k

πUj ,X(uj)

=
∫

du1 · · ·
∫

dum

× qX(x, u1, . . . , uk−1, ũk, uk+1, . . . , um) δuk
(ũk)

m∏
j=1

j 6=k

πUj ,X(uj) (C.66)

π- AND λ-MESSAGES FOR SOME DISTRIBUTIONS 212

which is formally identical to πX constructed from a list of π-messages which includes

δuk
(ũk) in place of a genuine π-message from Uk to X. Thus this λ-message is computed

by completing the list of π-messages with a delta function for Uk, and then using one

of the formulas in §C.3. Note that the delta function changes with every new argument

uk for which the λ-message is to be evaluated, so a new πX is calculated for each value

of uk.

C.6.10 Arbitrary conditional distribution, arbitrary likelihood, arbitrary π-messages.

A direct representation of §C.66 is constructed from the conditional distribution, like-

lihood, and π-messages. A numerical integration is carried out for each value of uk

for which λX,Uk
is to be evaluated. In the present version (September, 1999) of the

riso software, the integration over the parents is carried out separately from the 1-

dimensional integration over X. If there are two or more π-messages, the integration

over {U1, . . . , Um}\Uk is implemented as quasi Monte Carlo integration; if there is only

one π-message, an ordinary Monte Carlo integration is calculated. (This is due to a

characteristic of the algorithm, TOMS 659, employed to generate the low-discrepency

sequence for QMC: it only works in two or more dimensions.) The integration over X

is computed by a 21-point Gauss-Kronrod rule; it is not adaptive. It would probably

be more efficient to carry out the integration over the child variable and the parents all

at the same time.

Appendix D

NOTES ON MONOTONE CUBIC SPLINES

A set of knots x1 < x2 < x3 < . . . < xn is given. We wish to find an interpolating

spline function which is nonnegative on the interval [x1, xn]. Assuming that the spline

has a continuous first derivative, a monotone piecewise cubic spline is determined by

the function value fi = f(xi) and the value of the first derivative at di = f ′(xi) at each

knot xi. Write the spline function and its derivative on the interval [xi, xi+1] as

yi(x) = αi,0 + αi,1 · (x− xi) + αi,2 · (x− xi)2 + αi,3 · (x− xi)3, (D.1)

y′i(x) = αi,1 + 2αi,2 · (x− xi) + 3αi,3 · (x− xi)2 (D.2)

Matching function and derivative values at each end of the interval [xi, xi+1],

y(xi) = fi, y′(xi) = di, (D.3)

y(xi+1) = fi+1, y′(xi+1) = di+1 (D.4)

and solving for the coefficients αi,0, . . . , αi,3, we find

αi,0 = fi, (D.5)

αi,1 = di, (D.6)

αi,2 = 3
∆fi

(∆xi)2
− 2di + di+1

∆xi
, (D.7)

αi,3 = −2
∆fi

(∆xi)3
+

di + di+1

(∆xi)2
(D.8)

where we have defined, for convenience,

∆xi = xi+1 − xi, (D.9)

∆fi = fi+1 − fi (D.10)

It remains to be seen how the derivatives at the knots are determined. Every choice of

the di yields an interpolating cubic spline. For the purpose of representing probability

NOTES ON MONOTONE CUBIC SPLINES 214

density functions, we need a spline which is everywhere nonnegative. According to

Ref. [33], choosing

di =

Si−1Si

αSi+(1−α)Si−1
if Si−1Si > 0,

0 otherwise
(D.11)

with

Si =
∆fi

∆xi
(D.12)

α =
1
3

(
1 +

∆xi

∆xi−1 + ∆xi

)
(D.13)

will yield a spline which stays within the limits [mini fi, maxi fi]. Thus if all the fi

are nonnegative (as they are when they come from a probability density), the spline

function will also be nonnegative. There are other choices of the di which have this

property [33].

To complete the specification, it is assumed that d1 = dn = 0. It is assumed that the

approximation is zero outside of the interval [x1, xn]; typically x1 and xn are assigned

as the endpoints of the effective support of a probability density.

Appendix E

NOTES ON CONDITIONAL GAUSSIAN DISTRIBUTIONS

E.1 Definition of conditional Gaussian models

The relation between a Gaussian joint distribution and the distribution of some of the

variables conditional on others is described by the following result [81, §VIII-9.3]. Let

the vector X have a Gaussian distribution with mean µ and covariance Σ. Let us

partition X ∈ Rm+n into X(1) ∈ Rm and X(2) ∈ Rn, so X = (X(1), X(2)), likewise

partition µ as (µ(1), µ(2)) and Σ as

Σ =

 Σ(11) Σ(12)

Σ(21) Σ(22)

Then the distribution of X(1) given X(2) is again Gaussian, with mean

µ(1|2) = µ(1) + Σ(12)
(
Σ(22)

)−1 (
X(2) − µ(2)

)
(E.1)

and covariance

Σ(1|2) = Σ(11) − Σ(12)
(
Σ(22)

)−1
Σ(21) (E.2)

Note that the mean of the conditional distribution is a linear combination of X(2) plus

a constant term, while the covariance does not depend on X(2).

Another useful result (loc. cit.) concerns the marginal distribution of some vari-

ables in a joint Gaussian distribution. The marginal distribution of, say, X(2) is again

Gaussian, with mean µ(2) and covariance Σ(22).

Consider now the conditional distribution of X(1) given X(2) when their joint dis-

tribution is a mixture of joint Gaussian distributions. From the above results, we can

show that this conditional distribution is a mixture of conditional Gaussians, with mix-

ing parameters that depend on the context X(2). For convenience, write the Gaussian

NOTES ON CONDITIONAL GAUSSIAN DISTRIBUTIONS 216

density function as

g(x; µ,Σ) = (2π)−k/2 (detΣ)−1/2 exp
(
−1

2
(x− µ)′Σ−1(x− µ)

)

where k is the number of dimensions of x, not necessarily equal to m + n. Denote the

joint mixture with N components as

pX(x) =
N∑

j=1

pj,X(x) =
N∑

j=1

αj g(x;µj , Σj) (E.3)

Since the integrations for marginalizing over X(2) distribute over the summation in

Eq. E.3, the marginal distribution for X(2) is also a Gaussian mixture, with mixing

coefficients equal to the original mixing coefficients:

pX(2)(x(2)) =
N∑

j=1

αj pj,X(2)(x(2)) =
N∑

j=1

αj g(x(2);µ(2)
j , Σ(22)

j) (E.4)

The conditional density of X(1) given X(2) is, as usual, the ratio of the joint density to

the marginal density of X(2).

pX(1)|X(2)(x(1), x(2)) =
pX(x(1), x(2))
pX(2)(x(2))

=
N∑

j=1

αj pj,X(x)
pX(2)(x(2))

=
N∑

j=1

αj pj,X(2)(x(2))

pX(2)(x(2))
pj,X(x)

pj,X(2)(x(2))

=
N∑

j=1

αj pj,X(2)(x(2))

pX(2)(x(2))
pj,X(1)|X(2)(x(1), x(2)) (E.5)

=
N∑

j=1

αj g(x(2); µ(2)
j ,Σ(22)

j)

pX(2)(x(2))
g(x(1);µ(1|2)

j ,Σ(1|2)
j) (E.6)

with the conditional mean µ(1|2) and conditional covariance Σ(1|2) defined in Eqs. E.1

and E.2, respectively. Eq. E.6 shows that the conditional distribution is a mixture

of conditional Gaussians, and each component of the conditional mixture is just the

conditional of the corresponding component in the joint mixture. The j’th mixing

NOTES ON CONDITIONAL GAUSSIAN DISTRIBUTIONS 217

parameter is equal to

αj pj,X(2)(x(2))

pX(2)(x(2))
=

αj g(x(2);µ(2)
j , Σ(22)

j)
∑N

i=1 αi g(x(2); µ(2)
i , Σ(22)

i)
(E.7)

This quantity, which also appears in the expectation-maximization algorithm for fit-

ting mixture parameters, is sometimes called the “responsibility” of the j’th mixture

component (of the marginal distribution) for the datum x(2).

In summary, Eqs. E.4, E.5, and E.7 show that a conditional distribution of a joint

mixture distribution is again a mixture, with each component equal to the conditional

of the corresponding component of the joint distribution, and each mixing coefficient, a

function of the variables X(2) on which we conditioning, equal to the responsibility of

the corresponding component of the marginal distribution of X(2). These results hold

for all types of mixture distributions, not just for Gaussian mixtures. In the latter case,

the conditional mixture is a mixture of conditional Gaussians, and the marginal of any

variables is also a mixture of Gaussians.

E.2 Computing π- and λ-messages for conditional Gaussians

If all π- and λ-messages are Gaussian densities and the relation of a variable to its parents

is conditional Gaussian (linear in the mean), then exact results are easily obtained for

posterior distributions, which are again Gaussian densities [63]. One might hope that

exact results could be obtained if all the π- and λ-messages are Gaussian mixtures and

relations are described by mixtures of conditional Gaussian densities, but unfortunately

it appears that exact results cannot be computed for the predictive support, πX , and

the likelihood message, λX,U . The derivation of these functions requires an integration

of the product of the conditional density with π- or λ-messages. Due to the presence

of the variable mixing coefficient (Eq. E.7) in the conditional density, the integration is

difficult; the variable mixing coefficient is not a Gaussian density function but a ratio

of such functions.1 I made an attempt to use Mathematica to compute πX for a simple

1 The exact results presented in Refs. [29, 30] stem from the assumption that the conditional distri-
bution does not contain a ratio of Gaussian density functions. As the ratio serves to normalize the
conditional density so that integrating over it w.r.t. X yields 1, it seems indefensible to omit the ratio.

NOTES ON CONDITIONAL GAUSSIAN DISTRIBUTIONS 218

example, but even Mathematica was unable to carry out the integration exactly.

Thus it appears that the computation of predictive support and likelihood mes-

sages will require numerical integrations. Although numerical integrations become time-

consuming when the number of dimensions is greater than about 3, the integrands are

well-behaved, at least. It can readily be demonstrated that the πX and λX,U functions

can be expressed as repeated summations over an integral containing a single product of

a conditional Gaussian density with some other Gaussian densities. These integrals can

be evaluated by the same algorithms used for numerical integration elsewhere in riso.

The output is a Gaussian mixture which approximates (in the minimum cross-entropy

sense) the πX or λX,U function.

If all π- and λ-messages are Gaussian mixtures, then the posterior, likelihood sup-

port, and predictive message functions can all be computed exactly, and the results are

again Gaussian mixtures. It is easy to show at the parameters of the results are simple

functions of the parameters of the π- and λ-messages. Thus only πX or λX,U func-

tions need to be approximated in a belief network composed of mixtures of conditional

Gaussians; the πX,Y , λX , and posterior can be computed exactly.

Appendix F

MISCELLANEOUS FORMULAS FOR MUTUAL INFORMATION

F.1 An identity relating MI and average conditional MI

There is an identity, relating the mutual information of different groups of variables,

which is useful in calculations. Suppose we have two variables X1 and X2 and we wish to

compute the mutual information MI((X1, X2), Y) of these two, considered components

of an ordered set (X1, X2), with another variable Y . Let’s agree to the usual abuse of

notation, writing p(X, Y), p(X|Y), p(Y), etc., instead of the more precise pXY (u, v),

pX|Y (u, v), pY (u), etc. From the definition of MI we have

MI((X1, X2), Y) =
∫

dX1

∫
dX2

∫
dY p(X1, X2, Y) log

p(X1, X2|Y)
p(X1, X2)

=
∫

dX1

∫
dX2

∫
dY p(X2, Y |X1) p(X1) log

p(X2|Y, X1)
p(X2|X1)

+
∫

dX1

∫
dX2

∫
dY p(X2, Y |X1) p(X1) log

p(X1|Y)
p(X1)

=
∫

dX1

∫
dX2

∫
dY p(X2, Y |X1) p(X1) log

p(X2|Y, X1)
p(X2|X1)

+
∫

dX1

∫
dY p(Y |X1) p(X1) log

p(X1|Y)
p(X1)

= MI(X2, Y |X1) + MI(X1, Y) (F.1)

where MI is an average conditional mutual information — note that

MI(X2, Y |X1) =
∫

dX1

(∫
dX2

∫
dY p(X2|Y, X1) p(Y |X1) log

p(X2|Y, X1)
p(X2|X1)

)
p(X1)

=
∫

dX1 MI(X2, Y |X1) p(X1) (F.2)

If there are more than two X’s involved, the above decomposition can be repeated; the

result is

MI((X1, . . . , Xm), Y) =
m−1∑

k=1

MI(Xk+1, Y |X1, . . . , Xk) + MI(X1, Y) (F.3)

MISCELLANEOUS FORMULAS FOR MUTUAL INFORMATION 220

Thus a mutual information of multiple variables can be computed as the sum of one or

more average conditional mutual informations and one unconditional mutual informa-

tion. As it happens, it is convenient to write an algorithm to compute the MI terms

and add them up; this approach was used to compute the results described in §8.1.1.

F.2 Kullback-Leibler divergence between two Gaussian densities

The Kullback-Leibler divergence between two Gaussian densities p1(x) = g(x; µ1, σ1)

and p2(x) = g(x; µ2, σ2) is just

KL(p1, p2) =
∫

dx p1(x) log p1(x)−
∫

dx p1(x)
(
− log σ2

√
2π − 1

2
(x− µ2)2

σ2
2

)

=
1
2

(
σ2

1

σ2
2

− 1
)

+
1
2

(µ1 − µ2)2

σ2
2

− log
σ1

σ2
(F.4)

Since the exponentials in the densities p1 and p2 are to the base e, it is important that

the logarithm in Eq. F.4 be the natural logarithm, and the result is in nats. One can,

of course, divide the entire right-hand side by log 2 to obtain a result in bits, but it is

incorrect to simply substitute a logarithm to the base 2 for the natural logarithm in

Eq. F.4.

Appendix G

A REMARK ON INVARIANT MEASURES OF DISCRETE-TIME
SYSTEMS

There is an important equation in the study of nonlinear dynamical systems which

can be derived from the propagation equations described in §5.3. A dynamical system in

discrete time can be represented as a belief network as shown in Figure G.1. If the state

variable y has a known value at time t, then the value at time t + 1 is a deterministic

function F ,

yt+1 = F (yt) (G.1)

Thus for the conditional distribution of yt+1 given yt we may write

pyt+1|yt
(yt+1, yt) = δ(yt+1 − F (yt)) (G.2)

In itself, this conditional distribution is not particularly interesting. However, suppose

that we do not know yt with perfect accuracy; all we have is a distribution pyt which de-

scribes what we do know about yt. Then we compute a distribution over yt+1 according

to Eq. 5.2,

pyt+1(u) =
∫

δ(u− F (v)) pyt(v) dv (G.3)

yt−1 yt yt+1

Figure G.1: A representation of a dynamical system as a directed graph. The transition
from time t to t + 1 is governed by a deterministic function F ; the distribution of the
state variable at t + 1 is given by δ(yt+1 − F (yt)).

ON INVARIANT MEASURES OF DISCRETE-TIME SYSTEMS 222

Any uncertainty in yt is propagated downstream to yt+2, yt+3, . . . by repeating the same

transformation,

pyt+2(u) =
∫

δ(u− F (v)) pyt+1(v) dv

pyt+3(u) =
∫

δ(u− F (v)) pyt+2(v) dv

pyt+4(u) =
∫

δ(u− F (v)) pyt+3(v) dv

...

For some kinds of dynamical systems, for example diffusion systems, the state becomes

more and more widely dispersed with each time step. However, there are systems for

which the state y reaches a limiting distribution, called the “invariant measure” for the

system. The invariant measure p∗ must satisfy

p∗(u) =
∫

δ(u− F (v)) p∗(v) dv (G.4)

Eq. G.4 is called the Frobenius-Perron equation, and it plays a central role in the study

of the ergodic properties of dynamical systems. From the general equations for the

computation of πy, we can see that solutions of the Frobenius-Perron equation can be

characterized as π-messages which are invariant under the evolution F of the system.

There is lots of fun to be had in the computation of solutions of Eq. G.4; see, for

example, Ref. [61].

If a system has an indecomposable invariant measure, then the system is ergodic and

time-averages coincide with space-averages. This is commonly interpreted as meaning

that the system can be treated as random even if we know it is completely deterministic;

as a typical case, whether or not there is such a thing as the “average climate of the

earth” would follow from a demonstration that global weather is governed by equations

which are “chaotic,” in the generally accepted definition [61].

However, note that solutions of the Frobenius-Perron equation are descriptions of

long-term behavior alone. In the short term, there may be more specific distributions

(i.e., distributions with less entropy) which describe the state of the system, which tend

ON INVARIANT MEASURES OF DISCRETE-TIME SYSTEMS 223

to decay (in the absence of new information) toward the invariant measure; see, for

example, Figures 2 and 3 in Ref. [32]. For systems governed by differential equations,

the evolution of a distribution over states is related to the local Lyapunov exponents of

the system [44]. Short-term distributions can always be computed, at least in principle,

by Eq. G.3, but numerical approximations will usually be necessary.

	An intercontinental belief network
	Has Elvis Presley come back for a visit?
	Assignment of numerical probabilities in observation models
	Calculation of degrees of belief
	Comments on the ``Where is Elvis?'' problem
	What's to come in the dissertation

	Introduction to graphical probability models
	Generalizing logic into probability
	A useful elementary result: the disjunction rule

	Properties of joint, conditional, and marginal densities
	Assigning numerical values to probability distributions
	Numerical probabilities via exchangeable labels
	Heuristics for expression of partial knowledge

	Shortcomings of probability
	Conventions of notation
	Elements of graphical probability models
	A graphical criterion for independence

	Probabilistic interpretation of prediction and diagnosis
	Revision of hypotheses
	Prediction and ``What if?'' scenarios
	Diagnosis and ruling out hypotheses
	Function inversion
	Value of information

	Probability is the glue that holds the world together
	Express relation of one variable to others with conditional probability
	Treat uncertainty in measurements, parameters, and hypotheses symmetrically
	``Think locally, compute globally''
	Laws of probability permit incremental development

	A glance forward

	On the concept of probability
	Historical remarks
	On induction
	Hume's critique of induction
	A probabilistic interpretation of `falsifiability'

	Overview of the riso belief network system
	Features of the riso system
	Representation of belief networks with heterogeneous distributions
	Inference in polytrees with arbitrary distributions
	Implementation of distributed belief networks

	Communication in distributed belief networks
	Local versus global control of communication.
	Publishing information as distributed belief networks.
	Computing inferences in distributed belief nets

	Solutions to communications problems
	Locating and connecting belief networks on different hosts
	Communicating - and -messages between belief networks
	Coping with communication failures
	Security issues
	Parallel computation

	Example: Monitoring a Distributed System
	Where is the magic hidden?

	An inference algorithm for heterogeneous polytrees
	Overview of the inference problem
	Additional nomenclature of polytrees
	The polytree inference algorithm
	's and 's for mixture distributions

	Implementation of the inference algorithm
	Approximating 's on the fly
	Numerical subtleties of cross-entropy calculations
	Constructing monotone spline approximations
	Exploiting parallelism for faster inferences
	Extending the polytree algorithm

	Belief network idioms for sensors
	A model for the ``strange magnitude'' problem
	Alternative groupings
	A simple sensor model
	A sensor model with temporal dependence
	A model of redundant sensors
	Modeling a predictable measured variable
	A model of correlated measured variables
	Learning a predictive sensor model

	Selecting rates to minimize energy and demand costs
	Specification of a belief network for rate selection
	On the stability of a transfer function model

	A conditioning algorithm for inferences in the building model
	Computation of a distribution over maximum energy demand

	Computing expected costs using rate schedules
	General approach for cost calculations
	Computation of costs for the model building

	Additional belief network applications
	A model of a heating coil
	Assessing value of information of measurements by MI
	Is Tdb,lvg higher or lower than expected?

	A model of a mixing box damper
	Local models in the damper belief network
	Belief revision in a temporal belief network
	Strengthening repeated weak evidence
	Predictions from the damper belief network

	Concluding remarks
	Calibration in situ and other learning applications
	In closing

	The 1.51.5riso belief network grammar
	Implementation details
	1.51.5Temporal dependence
	1.51.5Arbitrary continuous/discrete conditional densities
	1.51.5Identifier scope rules
	1.51.5Extending the class 1.5Variable

	Additional remarks

	1.51.5riso communications architecture
	- and -messages for some distributions
	A note on post-processing of mixture distributions
	Symbolic results for posterior distributions
	1.51.5Both X and X are discrete.
	1.51.5Discrete X and arbitrary X.
	1.51.5Both X and X are Gaussian.
	1.51.5Both X and X are mixtures of Gaussians.
	1.51.5Both X and X are general mixtures.
	1.51.5Both X and X are arbitrary.

	Symbolic results for X calculations
	1.51.5Identity with one arbitrary parent.
	1.51.5Sum of Gaussian variables.
	1.51.5Sum of mixtures of Gaussian variables.
	1.51.5Linear combination of Gaussian variables.
	1.51.5Linear combination of mixtures of Gaussian variables.
	1.51.5Product of lognormal variables.
	1.51.5Ratio of lognormal variables.
	1.51.5Maximum of arbitrary distributions.
	1.51.5Minimum of arbitrary distributions.
	1.51.5Disjunction of binary variables.
	1.51.5Exclusive-or of binary variables.
	1.51.5``Exactly one'' of binary variables.
	1.51.5Indexed distribution with discrete -messages.
	1.51.5Conditional Gaussian with Gaussian -messages.
	1.51.5Conditional discrete with discrete parents.
	[*] 1.51.5Autoregressive model with Gaussian parent.
	1.51.5Sum of arbitrary distributions.
	1.51.5Product of distributions supported on (0,+).
	1.51.5Ratio of distributions supported on (0,+).
	1.51.5Functional relation with arbitrary -messages.
	1.51.5Regression model with Gaussian inputs.
	1.51.5Regression model with mixtures of Gaussians inputs.
	1.51.5Regression model with arbitrary inputs.
	1.51.5Classifier with arbitrary inputs.
	1.51.5Indexed distribution with arbitrary parents.
	1.51.5Arbitrary conditional distribution with arbitrary parents.

	Symbolic results for X calculations
	1.51.5All -messages are discrete.
	1.51.5All -messages are Gaussian.
	1.51.5All -messages are mixtures of Gaussians.
	1.51.5All -messages are general mixtures.
	1.51.5All -messages are arbitrary distributions.

	Symbolic results for -messages
	Symbolic results for -messages
	1.51.5Conditional discrete with discrete likelihood and discrete -messages.
	1.51.5Conditional Gaussian with Gaussian likelihood and Gaussian -messages.
	1.51.5Conditional discrete with discrete likelihood and no -messages.
	[*] 1.51.5Autoregressive model with Gaussian likelihood and Gaussian -messages.
	1.51.5Indexed distribution, variable is evidence, and no -messages.
	1.51.5Indexed distribution, variable is evidence, and discrete -messages.
	1.51.5Conditional discrete with arbitrary likelihood and no -messages.
	1.51.5Functional relation with arbitrary likelihood and -messages
	1.51.5Arbitrary conditional distribution, variable is evidence, arbitrary -messages.
	1.51.5Arbitrary conditional distribution, arbitrary likelihood, arbitrary -messages.

	Notes on monotone cubic splines
	Notes on conditional Gaussian distributions
	Definition of conditional Gaussian models
	Computing - and -messages for conditional Gaussians

	Miscellaneous formulas for mutual information
	An identity relating MI and average conditional MI
	Kullback-Leibler divergence between two Gaussian densities

	On invariant measures of discrete-time systems

