
riso: An Implementation of Distributed Belief Networks

Robert Dodier
robert dodier@yahoo.com

http://riso.sourceforge.net

Abstract

This paper describes riso, an implementation of dis-
tributed belief network software. Distributed belief
networks are a natural extension of ordinary belief net-
works in which the belief network is composed of sub-
networks running on separate processors. In keeping
with the distributed computational model, no single
processor has information about the structure of the
entire distributed belief network, and inferences are to
be computed using only local quantities. A general
policy is proposed for publishing information as belief
networks. A modeling language for the representation
of distributed belief networks has been devised, and
software has been implemented to compile the model-
ing language and carry out inferences. Belief networks
may contain arbitrary conditional distributions, and
new types of distributions can be defined without mod-
ifying the existing inference software. In inference, an
exact result is computed if a rule is known for combin-
ing incoming partial results, and if an exact result is not
known, an approximation is computed on the fly — this
scheme allows the belief networks to directly represent
the distributions that arise in practice. Some features
of Java, the implementation language, have been found
to be extremely useful, namely the classloader and Re-
mote Method Invocation. The paper concludes with a
small example which shows how a monitoring system
can be implemented as a distributed belief network.

Introduction
Distributed belief networks are useful models for di-
agnosis and prediction in geographically or function-
ally distributed systems. Belief networks for such
systems have lately been the object of study by Xi-
ang (Xiang 1996) and his students (Chu & Xiang 1997;
Hu & Xiang 1997) who refer to “multiply-sectioned
Bayesian networks” which have a certain strict defini-
tion. In this paper the term “distributed belief net-
work” will be used rather loosely to mean a probability
model represented as an acyclic directed graph and im-
plemented on multiple processors which communicate
by means of a standard networking protocol; that part
of a distributed belief network implemented on a partic-
ular processor will be referred to as a “component net-
work” or “subnetwork.” These definitions are deliber-
ately vague, so as to include a wide range of interesting

architectures and implementations. Broadly speaking,
we will be as much interested in the “distributedness”
as in the “belief-networkness” of distributed belief net-
works, and the interaction between these two aspects
will lead to interesting problems.

Figure 1 shows a typical distributed belief network.
Each one of the components A, B, C, and D is itself
a belief network. The variables within the belief net-
works are identified by network.variable. For example,
variable t in subnetwork A is referred to as “A.t.” This
scheme avoids name conflicts when variables in two net-
works have the same name. Note that in the example
network, there is one loop (that is, an undirected cy-
cle) wholly contained within subnetwork A, but there
is another loop induced by the dependencies of B and
C on variables in A. Such induced dependencies make
life difficult for inference algorithms; a local algorithm
for inference in a distributed system is desirable, but
may not be feasible in the presence of loops.

The representation of geographically distributed sys-
tems is perhaps the prototypical application of dis-
tributed belief networks, although by no means the only
application. It is natural to represent each geographical
unit with a belief network, and to represent the flow of
information from one locale to another by edges con-
necting variables in separate belief networks; different
kinds of messages travel with the arrows and against
the arrows. Such a scheme is all the more reasonable
if the cost, time lapse, or difficulty of transferring in-
formation from one locale to another is large compared
to the computations required for inference within one
belief network. In that case, we will want to locally
carry out as much computation as possible, and only
transmit messages when necessary.

In addition to modeling geographically separate sys-
tems as separate belief networks, one can use dis-
tributed belief networks as a means of decomposing the
modeling problem so that modeling of the pieces can
proceed independently. For the same reasons that other
kinds of software are customarily constructed piece by
piece, it could be convenient to construct sub-networks
separately, then connect them together through com-
mon variables. A decomposition into sub-networks will
make it easier to comprehend the model and present



A.s

A.t

A.u

A.v

B.p

B.q

C.x

C.y

C.z

D.n

Figure 1: An example of a distributed belief network,
composed of four subnetworks, A, B, C, and D.

it to other people. The components of a distributed
belief network can be treated as independent software
modules and reused for purposes other than those for
which they were originally constructed. A great deal of
work may go into the design and implementation of a
belief network for a particular engine, reactor, pump,
compressor, etc., and it will greatly speed development
for new applications if the belief networks previously
devised for similar systems can be reused. Generic be-
lief networks for some special purposes, such as sensor
models, time-series filtering, and hidden Markov mod-
els, can be easily constructed; it is foreseen that one
could make available a library or archive of belief net-
work components, which could be used as templates
or building blocks from which particular applications
could be constructed.

It is assumed that the reader is familiar with be-
lief networks. Should this not be the case, the reader
is referred to the introductory texts by Pearl (1988)
and Castillo et al. (1996). An excellent introduction to
probability and its use as a reasoning tool is given by
Jaynes (1996).

The riso project thus far

A prototype implementation of distributed belief net-
works, named riso,1 has been constructed. Progress
has been made in several areas, in both theoretical and
practical matters. On the whole, the theoretical devel-
opment is mostly complete, as is most of the software
development, but specific applications of riso to prac-

1So called because the nodes in belief network diagrams
look like nice plump grains of rice; see Figure 1.

tical prediction and diagnosis problems are still under-
way. Let us now survey the progress of the riso project.

Representation of belief networks with hetero-
geneous distributions. A necessary first step towards
a flexible and extensible modeling system for general
applications is the ability to represent belief networks
composed of arbitrary conditional probability distribu-
tions. In order to make the belief network more com-
prehensible to domain experts, and to simplify the spec-
ification and modification of the belief network, proba-
bility distributions from the problem domain should be
directly represented in the belief network. Software has
been implemented in riso which makes it possible to
represent several kinds of basic distributions, and riso
is designed so that additional types of distributions can
be implemented without changing the existing code at
all. In contrast, most currently available belief net-
work software can only handle a few well-known types
of distributions, and it is assumed that if a distribution
arising in a problem does not fall into a known cate-
gory, then that distribution will be represented by an
approximation belonging to a known category.

Inference in polytrees with arbitrary distribu-
tions. riso implements a “just in time” approximation
scheme for inference with arbitrary conditional distribu-
tions described in another report (Dodier 1998a). The
riso inference algorithm is based on the polytree algo-
rithm for belief network inference, in which “messages”
(predictive distributions called π-messages and likeli-
hood functions called λ-messages) are computed; the
equations for π- and λ-messages are given, for example,
in Dodier (1998d). The posterior for a given variable
depends on the messages sent to it by its parents and
children, if any. In this scheme, an exact result is com-
puted if such a result is known for the incoming mes-
sages, otherwise an approximation is computed, which
is usually a mixture of Gaussians. The approximation
may then be propagated to other variables. Approx-
imations for likelihood functions (λ-messages) are not
computed; the approximation step is put off until the
likelihood function is combined with a probability dis-
tribution — this avoids certain numerical difficulties. In
contrast with standard polytree algorithms, which can
only accomodate distributions of at most a few types,
this heterogeneous polytree algorithm can, in princi-
ple, handle any kind of continuous or discrete condi-
tional distribution.2 With standard algorithms, it is
necessary to construct an approximate belief network,
in which one then computes exact results; the heteroge-
neous polytree algorithm, on the other hand, computes
approximate results in the original belief network. The
advantages are that the approximations computed by
the new algorithm are all one-dimensional and thus eas-
ier to compute, and, more importantly, that the belief

2A different approach to solve the problem of inference
in heterogeneous belief networks is taken by the BUGS
(“Bayesian inference Using Gibbs Sampling”) software, de-
scribed by Gilks et al. (1994).



network can be directly represented using the condi-
tional distributions most appropriate for the problem
domain.

Implementation of distributed belief net-
works. In extending the usual single-processor com-
putational model to multiple processors, several inter-
esting problems arise, which must be solved for the suc-
cessful implementation of a distributed belief network.
In keeping with the distributed computational model,
no single processor has information about the structure
of the entire distributed belief network, and inferences
are to be computed using only local quantities. How-
ever, this leads to difficulties (which have not yet been
resolved) when there are loops in the distributed belief
network which contain nodes in two or more component
networks. Also, temporal dependencies in one network
lead to temporal dependencies in any other network
connected to some of its variables; this may lead to in-
tractable dependencies, especially if some of the depen-
dencies involve different time scales. While these prob-
lems of induced dependencies have only been identified,
and not resolved, progress has been been made in other
areas. A general policy is proposed for publishing infor-
mation as belief networks. A modeling language for the
representation of distributed belief networks has been
devised, and software has been implemented to compile
the modeling language and carry out inferences.

Communication in distributed belief
networks

In this section, let us briefly review some of the issues
surrounding communication in distributed belief net-
works. These topics are explored at greater length in a
technical report (Dodier 1998a).

Local versus global control of communication.
Throughout this paper it will be assumed that com-
munications between the components of a distributed
belief network will be restricted to immediate neigh-
bors. That is, belief network A can communicate with
another, B, only if some variable in A has a parent or
child in B. This local communication model, inspired
by the idea of belief networks representing independent
agents, is to be contrasted with a global communication
model in which a central mechanism organizes commu-
nications between all components of a distributed be-
lief network. The local communication model is better
suited to a system in which component belief networks
are created and executed independently, for potentially
different purposes.

Publishing information as distributed belief
networks. There is considerable promise in the idea
of publishing information on the Internet in the form
of belief networks. Just as people can now connect to
data sources in the form of files or Common Gateway
Interface (CGI) and then reprocess the information for
their own purposes, it should be possible to connect to
belief network interfaces to obtain information in the
form of probability and likelihood messages, which can

then be used for purposes not specifically foreseen by
the originators of the belief network. The original belief
network together with any variables which are created
as descendants of its interface variables will comprise
a larger belief network. The new child variables may
in turn be linked to still others through their own in-
terface variables; a belief network of any size could be
constructed in this piecemeal fashion.

Allowing a belief network to reference variables in
another raises interesting questions concerning the per-
mission to pass messages within the overall belief net-
work, a topic considered at greater length in a technical
report (Dodier 1998b).

Computing inferences in distributed belief
nets. To accomodate the geographically and function-
ally distributed belief networks which are the focus of
this paper, it is of great important that the inference
algorithms used allow for locality of computations and
heterogeneous conditional distributions. Toward this
end, the central inference algorithm of riso is the poly-
tree algorithm (Pearl 1988). Unfortunately, this algo-
rithm has limited applicability to belief networks which
contain loops (that is, undirected cycles). In riso loops
will be handled by a conditioning algorithm (Pearl 1988;
Castillo, Gutierrez, & Hadi 1996), using a loop-cutset
algorithm (Becker & Geiger 1994), but the details of
this scheme have not yet been worked out. On the
brighter side, the polytree algorithm does lend itself well
to accomondating different types of conditional distri-
butions.

Software implementation of distributed
belief networks

A prototype implementation of some of these ideas
about distributed belief networks has been constructed
using the Java programming language, in particular the
Remote Method Invocation (RMI) mechanism for pass-
ing information between sub-networks. As a Java ap-
plication, riso will run on any hardware that supports
the Java virtual machine. Furthermore, riso has been
designed without a graphical user interface, to make it
possible to run the software on machines without a dis-
play; a rudimentary user interface has been constructed
for testing purposes.

In contrast to some other implementations of dis-
tributed systems for inference (e.g., the Integrated Di-
agnostic System (Wylie et al. 1997)) riso is not de-
signed to link diagnostic systems based on different soft-
ware architectures and different reasoning paradigms.
Probability was chosen as the sole medium for the ex-
pression and exchange of information, for theoretical
reasons (Cox 1946; Jaynes 1996) which suggest that
other paradigms for reasoning under uncertainty are
either essentially the same as probability or else fun-
damentally weaker.3 Choosing only one representation

3This argument does assume the acceptance of a certain
set of desiderata; see Jaynes (1996) for details. Reasoning
systems satisfying other desiderata might be considered for



of uncertainty also greatly decreases the complexity of
the software implementation. Choosing a single imple-
mentation language, and a single collection of classes
within that language, also greatly simplifies the imple-
mentation. The choice of a strictly probabilistic sys-
tem implemented in Java has the advantages of unity,
simplicity, and comprehensibility, both conceptual and
practical.

A parser for the riso belief network grammar has
been implemented; the riso grammar is a revision
of the proposed Belief Network Interchange Format
(BNIF) grammar. The riso grammar is described at
greater length in a technical report (Dodier 1998c). In
the riso grammar, each belief network is allocated a
namespace. Within each namespace, identifiers must
be unique. However, the same local identifier may oc-
cur in two different namespaces. To resolve an am-
biguous reference, an identifier is qualified with the “.”
operator; an unqualified identifier is assumed to ex-
ist in the current namespace. Namespaces cannot be
nested. The name of a belief network coincides with
the name of the file which contains it. The extension of
the filename is “riso”. For example, a belief network
named “sensor-diagnosis” is contained in a file named
“sensor-diagnosis.riso”. Each belief network file
contains exactly one belief network.

A qualified variable name of the form some-bn.x refers
to a variable in a belief network on the same host as the
network in which the reference occurs. If the belief net-
work some-bn is not already loaded, then it is loaded
from the file some-bn.riso on the local filesystem, and
the variable x is sought within it. A qualified variable
name of the form some-host/some-bn.x refers to a vari-
able in a belief network on the same or a different host.
The belief network some-bn is located by connecting to
an RMI daemon listening on a specified port on some-
host, and x is sought within the belief network. The
hostname can be a fully-qualified symbolic Internet ad-
dress, although one need specify only enough to locate
the host. The address can include a port number, e.g.
cedar.colorado.edu:2099. These rules for identifiers al-
low software to automatically locate belief networks re-
ferred to by another. Belief network developers can
break networks into separate components, thus increas-
ing comprehensibility and distributing computations.

The polytree algorithm lends itself well to the follow-
ing “lazy” computational scheme:

To compute the posterior for a variable X (or to
compute πX , or λX , or a π- or λ-message to X),
compute only those functions which are required,
then use those functions to compute the quantity
of interest.

Probability distributions are represented within the be-
lief network code as Java classes with descriptive names,
such as Gaussian and ConditionalDiscrete. To com-
pute the posterior (or πX , etc.), the inference code first

a distributed diagnostic system, but such a system would
be fundamentally incompatible with a probabilistic system.

computes the required functions by some means. Then
the inference code uses the types of the required func-
tions to search the local filesystem for a helper class
which contains a function to compute the quantity of
interest. The helper classes will be grouped together
into “packages” according to their purpose; all classes
to compute a posterior will be found in the package
computes posterior, likewise other functions will be
computed by classes in other packages.

For example, if the posterior is to be computed
and πX is represented by an object of class A and
λX is represented by an object of class B, then
the inference code attempts to find a class named
computes posterior.A B. If no such class exists, the
inference code attempts to locate a class named
computes posterior.S T where S is A or a superclass
of A and T is B or a superclass of B. This scheme makes
it possible to construct code which handles special cases
(for the subclasses) and handles general cases (for the
superclasses).

Each class which represents a probability dis-
tribution is a subclass of the abstract class
ConditionalDistribution (if it is conditional)
or Distribution (if it is unconditional). If an exact
symbolic result is known for some combination of
required functions, that result should be handled by
a helper class named by the subclasses. Otherwise,
we fall back on a helper class named according to the
superclasses. The approximation scheme mentioned
in the next section and described in more detail by
Dodier (1998b) is implemented by superclass helpers;
exact results are implemented by subclass helpers.

Approximating π’s and λ’s on the fly

To construct an approximation, riso minimizes the
cross-entropy between the target (which is the poste-
rior for a variable X, or πX , or a π-message, but not
λX or a λ-message) and a Gaussian mixture. (Approxi-
mations are not computed for likelihoods because likeli-
hoods need not be normalized nor normalizeable, and so
there is no well-defined approximation.) An algorithm
reminiscent of the expectation-maximization algorithm
is employed, as described by Poland (1994). The cross-
entropy calculation is just

∫
p(x) log q(x) dx,

denoting a target function as p and its Gaussian mix-
ture approximation as q. Values of p(x) are computing
by directly evaluating the appropriate equation — in
the case of πX and λX,Uk

, this requires numerical eval-
uation of integrals. Evaluating the cross-entropy itself
also requires a numerical integration.

Since over the course of several iterations of the cross-
entropy minimization algorithm the target function will
be evaluated repeatedly at the same or nearly the same
argument, we can speed up the calculations by cacheing
values of the target function. The cacheing algorithm



is based on a self-balancing binary tree called a “top-
down splay tree” (Sleator & Tarjan 1985). Each node in
the splay tree stores a key x and its associated function
value f(x); the nodes are ordered by increasing values
of x. When a value of f(x) is needed, the splay tree is
searched for x. If x is contained in some node, the asso-
ciated f(x) is returned. Otherwise, if x is between two
nearby values, the values associated with the neighbors
are interpolated and the result is returned. Otherwise
x is less than the least key in the tree or greater than
the greatest key, or the neighbors of x are too far away;
the value of f(x) is computed, stored in the tree with
key x, and returned.

On the average, searching a top-down splay tree re-
quires a number of operations proportional to the log-
arithm of the number of keys in the tree. These opera-
tions are relatively fast, such as dereferencing memory
addresses and comparing numbers. Since the target
function may be defined in terms of numerical integra-
tions which are relatively time-consuming, using a splay
tree as a cache can yield a significant speed-up.

There are various numerical subtleties to consider,
which are described in a technical report (Dodier
1998d). An initial approximation is constructed by
searching for “bumps” in the target density; finding the
bumps in an arbitrary density can be difficult. Numer-
ical integration in more than a few dimensions is also
difficult. riso uses the QAGS algorithm from quad-
pack.4 This is an adaptive one-dimensional quadrature
algorithm based on a 21-point Gauss-Kronrod rule. In-
tegrations in two or more dimensions are carried out as
repeated one-dimensional integrations. To make inte-
grations easier, riso tries to find an “effective support”
for the integrand which is as small a region as possi-
ble; an effective support is an interval or collection of
intervals which contains at least 1 − ε of the mass of
the distribution, with ε a suitable small number. Since
a likelihood function need not have a bounded support,
computations involving likelihoods are delayed until the
integrand contains the product of probability density
with the likelihood — this guarantees a bounded effec-
tive support.

Communications problems, and
solutions

Several interesting problems arise when a belief network
is implemented in a distributed computing system. The
usual network communication problems take on forms
peculiar to belief network computations. Among these
problems, the following have been handled in the design
of riso.

Locating and connecting belief networks on
different hosts. When a belief network is loaded, riso
advertises its name in a globally–visible list, called the
“registry.” Belief networks in other processes on the
same host or on different hosts can use the registry to

4quadpack is a collection of quadrature algorithms; it is
available from Netlib, www.netlib.org.

obtain a pointer to any registered belief network. If the
parent spruce/weather.humidity referred to by a belief
network cannot be located in the registry on the host
spruce, an attempt will be made to have the weather
belief network loaded onto spruce so that weather be-
comes available; this is similar in spirit to the resolution
of function references in libraries. If the host name is
omitted, the host of the belief network in which the
reference occurs is assumed. There will usually be a
process running on each host which can load any belief
network from a description on the file system of that
host. However, only a short program need be installed
on each host, and additional software can be loaded as
needed from another host. In particular, classes named
in a belief network description will be copied (by the
Java runtime software) to the host on demand; the
complete riso software need be installed on just one
machine.

Communicating π- and λ-messages between
belief networks. The messages transferred between
belief networks are probability distributions and like-
lihood functions. These are expressed in parametic
forms, which may be very short (e.g., a Gaussian can
be described by just a few numbers) or very long (e.g.,
a mixture of Gaussians may contain an arbitrary num-
ber of parameters). Probabilities and likelihoods are
represented as objects within the riso software, and
these objects are automatically converted into a block
of data which is transferred across a socket connection
by RMI. Thus a request for a message from a remote
belief network is implemented as a function call, and
the message which is returned appears to be the return
value of the function. As part of the general “lazy” com-
putational policy of riso, messages are requested only
when they are needed; this cuts down on the relatively
large overhead of passing messages between remote be-
lief networks.

Other kinds of messages are passed in distributed be-
lief networks. When evidence is entered or removed
from a node X in the network, messages are sent to
all parents and children of X, telling them that the π-
and λ-messages originating from X are no longer valid;
these “invalid π- or λ-message” messages are propa-
gated as appropriate to other nodes not d-separated
from X. Any node receiving such a message knows
that its posterior must be recomputed, but the compu-
tation is postponed until a request for the posterior is
received.

Coping with communication failures, which oc-
cur, for instance, when a host crashes or the process
running a belief network is killed. When a π- or λ-
message is required and an attempt to communicate
with the corresponding parent or child node fails, riso
attempts to re-establish the link using the same registry
look-up algorithm by which the link was originally es-
tablished. If the attempt to reconnect fails as well, in
order to make some progress riso assumes that no evi-
dence is available through the lost parent or child. Due
to the distinction between parents and children in the



computation of a posterior distribution, lost parents are
treated differently from lost children. A lost child is
simply dropped from the list of children of the variable
which requested the λ-message, since in the absence of
evidence from the child, the child has no effect on the
computation of the posterior. A lost parent must be
kept on the list of parents, but until the parent becomes
available again (through restarting the process running
the belief network), the prior for the parent will be sub-
stituted for any request for a π-message from that par-
ent, since in the absence of evidence the π-message from
the parent will simply be the parent’s prior. The par-
ent’s prior is sent from the parent to any remote child
when the child first makes contact with the parent.

Security issues. In distributed belief networks,
there are the usual problems of who can access which
data, and these problems can be handled by well-
known authentication, authorization, and encryption
algorithms. However, there is at least one security prob-
lem which is peculiar to belief networks, namely that
the naming X as the parent of Y implies (according to
the laws of probability) the transfer of information from
X to Y but also from Y to X. This suggests that one
could affect degrees of belief in a network maintained
by the Weather Service (let us say) by connecting some
child variables and then introducing evidence into our
sub-network; this problem and others are discussed at
greater length in a technical report (Dodier 1998b). It
is foreseen that the each belief network should be able
to specify which others can propagate information up
from child nodes, but this policy has not been imple-
mented yet in riso.

Example: Monitoring a Distributed
System

Consider the problem of monitoring a geographically
distributed system. Let us model each component of
the system as a separate belief network, each of which
has a discrete status variable and one or two variables
on which we can make measurements; in what follows
we’ll call these “measurable” variables. (We will dis-
tinguish between the variable we are trying to measure
and the measurement itself. The measurement may be
more or less accurate, and can be affected by a failure
of the sensor or measuring device. The monitor3 belief
network shows a simple measurement model, compris-
ing a measurable variable, the sensor status, and the
measurement.) The monitor is represented as a belief
network which contains only one variable, a “or” gate
which computes the probability that at least one of the
status variables is non-zero. We adopt the convention
that status equal to 0 represents the normal status, and
any other value represents an abnormal status.

The riso code for the monitor subnetwork names the
parents of the “or” gate as the status variables of the
three individual monitor subnetworks.

monitor1
combine

monitor3

mmnt

ssmble

s

or
m

s

m2

s

m1

monitor2

Figure 2: A distributed belief network for monitoring
geographically distributed equipment. Key: s = “sta-
tus,” m or mble = “measurable,” mmnt = “measure-
ment,” and ss = “sensor status.”

BeliefNetwork combine
{

Variable or
{

type discrete { "all OK"
"at least one failure" }

parents { rtt/monitor1.s
beethoven/monitor2.s
civil/monitor3.s }

distribution OrGate
}

}
In this belief network and others, the “BeliefNetwork”
tag not only begins the belief network description, but
names the Java class which knows how to parse the
description and which implements the various message-
passing functions necessary for computing inferences.
Likewise, “Variable” begins the description of a vari-
able within the belief network and also names the class
which parses the description and implements the func-
tions needed for a variable. In this scheme, one could
implement software which accepts an alternative de-
scription by simply extending the BeliefNetwork or
Variable class. For example, no provision has been
made in riso for representing display information such
as the color and position of variables’ nodes, but such
information could be stored by a FancyVariable which
extends Variable. More importantly, a conditional dis-
tribution represented in a riso belief network descrip-
tion is tagged with the name of the class which im-
plements it, and that class contains the code to parse
the description and implement the probability func-
tions needed for the inference algorithm. Thus special-
purpose distributions can be created as the need arises
in an application, and existing code for belief network
objects and for variables need not be changed, includ-
ing, above all, the inference algorithm.

Let us briefly consider the distributions encoded in
the belief networks in this example.5 In the interest

5The belief networks discussed in this example are in-



of brevity, only the description of monitor2 is shown.
The monitor1 belief network contains a simple “näıve
Bayes” model. In monitor2, variable mmnt has a condi-
tional Gaussian dependence on mble, and s is a logistic
discriminant model with two classes. Thus monitor2
shows a conventional classification model, which com-
putes class probabilities conditional on its inputs m1
and m2, integrated into the monitoring system.

BeliefNetwork monitor2
{

Variable s {
type discrete { "OK" "goofed" }
parents { m1 m2 }
distribution SquashingNetworkClassifier
{ ... } }

Variable m1 { distribution Gaussian
{ mean 30 std-deviation 4 } }

Variable m2 {
parents { m1 }
distribution ConditionalGaussian {

conditional-mean-multiplier { 0.3 }
conditional-mean-offset { 8 }
conditional-variance { 28 }

}
}

}
In monitor3, a näıve Bayes model is extended with a
simple measurement model. The measurable variable
mble is not directly known; only the measurement mmnt
is observed. The measurement depends on the status
of the sensor ss, as well as the measurable variable.
The measurement is a noisy function of the measur-
able variable when the sensor is working correctly, and
the measurement is just zero when the sensor is bro-
ken; this is common in sensors which output a voltage.
However, in the model specified in monitor3, a measure-
ment of zero can also occur when the sensor is working
correctly. Finally, combine contains a single variable,
or, which represents the probability that any of its par-
ents (the status variables monitor1.s, monitor2.s, and
monitor3.s) is non-zero.

Each belief network is running on a different host:
monitor1 on rintintin, monitor2 on beethoven, moni-
tor3 on civil, and combine on sonero. The first three
are Solaris machines, and the last is a GNU/Linux ma-
chine. The description of combine specifies, in the list
of parents for the or variable, which belief network is
running on which host.

First, let us set monitor2.m1 to −150. Querying
monitor2.s (that is, computing the its posterior), we
find p(s = “OK”|m1 = −150) = 0.2974. This result av-
erages over values of the missing variable monitor2.m2;
querying m2 we see that its posterior is a Gaussian dis-
tribution with mean -37 and standard deviation 5.2.

tended for illustration only, in particular the transmission of
messages between variables. The complete riso description
files for these belief networks can be found on the web.6 For
clarity, some identifiers have been abbreviated in this paper.

π
π

π

π
π π

λ
λ

λ

monitor1
combine

monitor3

monitor2

π

Figure 3: π- and λ-messages transmitted within a dis-
tributed belief network to satisfy a query on combine.or.
Evidence nodes are shaded.

So far, no messages have been passed from one be-
lief network to another. Now let’s set monitor3.mmnt
to 23 and query combine.or. A π-message is sent from
each monitoring belief network to the “or” gate. For
monitor1.s, this is just its prior since no evidence has
been introduced, and for monitor2.s, the π-message is
just the posterior which was computed a moment ago.
But for monitor3.s, computing the π-message to com-
bine.or requires that evidence be propagated up from
monitor3.mmnt; ss sends a π-message to mmnt, which
sends a λ-message to mble, which sends a λ-message
to s, which then sends the π-message to combine.or.
Note that none of the messages in monitor3 were com-
puted until combine.or asked for a π-message. We find
the posterior of combine.or has the probability that or
= “all OK” is 0.2759, given the upstream evidence in
monitor2 and monitor3.

Introducing evidence monitor1.m = 57, the posterior
probability of or = “all OK” drops to 0.01705. Now
there is evidence in all three monitor belief networks.
Figure 3 shows the messages which have been communi-
cated between the variables in the four belief networks
comprising our distributed monitoring system. Each
message is requested from the variable which needs the
it — a message is not constructed unless it is required;
this is the “lazy” computational policy. Also, messages
within a belief network (that is, within the boxes shown
in Figure 3) are transferred as return values from func-
tions, while messages between belief networks are trans-
mitted as blocks of data on a socket connection, and
reconstituted into program objects by their recipient.

Let’s see what happens in two scenarios involving a
failure. The first scenario is a communication failure:
beethoven has crashed, leaving monitor2 inaccessible. If
we query combine.or, an attempt is made to contact
monitor2 to supply a π-message. The attempt fails,
so combine.or uses the marginal prior for monitor2.s
which was computed when combine.or first connected
to monitor2.s. The prior for monitor2.s gives proba-
bility of “OK” equal to 0.03227, and this value is used



to update combine.or, yielding the probability of “all
OK” equal to 0.001833. Note that the prior over mon-
itor2.s must be computed by integrating over its par-
ents m1 and m2; priors for status variables in monitor1
and monitor3, which are root variables, are specified
directly.

The second scenario is a sensor failure in monitor3.
The sensor fails, and its output is zero. Querying mon-
itor3.ss, we find that p(“sensor OK”|mmnt = 0) =
0.2309. Although the likelihood for “sensor OK” in-
dicates that the measurement mmnt = 0 is much more
typical of a failed sensor than one operating correctly,
with

p(mmnt = 0|“sensor OK”)
p(mmnt = 0|“sensor not OK”)

= 0.003032

the posterior for “sensor OK” is appreciably greater
than zero due to the 99:1 prior odds in favor of “sensor
OK.” Since mmnt is the common descendent of s and ss,
information can travel from ss to s via mmnt. Query-
ing s, we see that the posterior probability of “OK” is
0.9213, not much different from its prior value of 0.9000.
However, if we set the sensor status ss equal to “OK,”
we find a greater change in the posterior of s. Now
the probability of s = “OK” is 0.9755. The effect of the
measurement on the status variable s was weakened be-
cause the evidence favored a failed sensor.

Continuing research

The “just in time” inference scheme is, regrettably, not
as robust as one might hope; however, the difficulties
are numerical, so there is hope. An investigation into
more sophisticated integration algorithms, perhaps of
the quasi Monte Carlo type, will be made. riso will be
extended with a greater number of predefined condi-
tional distributions (which will reduce the number of
cases in which approximate results need to be com-
puted), and a conditioning algorithm will be imple-
mented to handle loops, although it is not yet clear how
such an algorithm can be implemented without global
connectivity information. Finally, nontrivial applica-
tions involving modeling and diagnosis in engineering
problems will be implemented as riso belief networks.

References

Becker, A., and Geiger, D. 1994. Approximation al-
gorithms for the loop cutset problem. In de Mantaras,
R. L., and Poole, D., eds., Proc. 10th Conf. on Uncer-
tainty in Artificial Intelligence, 60–68. San Francisco:
Morgan Kaufmann.
Castillo, E.; Gutierrez, J.; and Hadi, A. 1996. Expert
Systems and Probabilistic Network Models. New York:
Springer-Verlag.
Chu, T., and Xiang, Y. 1997. Exploring parallelism
in learning belief networks. In Geiger, D., and Shenoy,
P., eds., Proc. 13th Conf. on Uncertainty in Artificial
Intelligence. San Francisco: Morgan Kaufmann.

Cox, R. 1946. Probability, frequency, and reasonable
expectation. Am. J. Physics 14(1):1–13. Reprinted
in (Shafer & Pearl 1990).
Dodier, R. 1998a. An algorithm for inferences
in a polytree with arbitrary conditional distribu-
tions. Technical report, U. Colorado at Boul-
der. URL http://civil.colorado.edu/~dodier/-
publications.html.
Dodier, R. 1998b. An overview of distributed be-
lief networks in engineering systems. Technical re-
port, U. Colorado at Boulder. URL http://civil.-
colorado.edu/~dodier/publications.html.
Dodier, R. 1998c. A revision of the Bayesian net-
work interchange format. Technical report, U. Col-
orado at Boulder. URL http://civil.colorado.-
edu/~dodier/publications.html.
Dodier, R. 1998d. Tools for unified predic-
tion and diagnosis in HVAC systems: The riso
project. Technical report, U. Colorado at Boul-
der. URL http://civil.colorado.edu/~dodier/-
publications.html.
Gilks, W.; Thomas, A.; and Spiegelhalter, D. 1994.
A language and program for complex Bayesian mod-
elling. The Statistician 43:169–178.
Hu, J., and Xiang, Y. 1997. Learning belief networks
in domains with recursively embedded pseudo inde-
pendent submodels. In Geiger, D., and Shenoy, P.,
eds., Proc. 13th Conf. on Uncertainty in Artificial In-
telligence. San Francisco: Morgan Kaufmann.
Jaynes, E. 1996. Probability theory: the logic of sci-
ence. Unpublished MS; URL ftp://bayes.wustl.-
edu/Jaynes.book/.
Pearl, J. 1988. Probabilistic reasoning in intelligent
systems. San Francisco: Morgan Kaufmann.
Poland, W. 1994. Decision analysis with continuous
and discrete variables. Ph.D. Dissertation, Stanford
University, Dept. of Engineering-Economic Systems.
Shafer, G., and Pearl, J., eds. 1990. Readings in uncer-
tain reasoning. San Mateo, CA: Morgan Kaufmann.
Sleator, D., and Tarjan, R. 1985. Self-adjusting bi-
nary search trees. J. Assoc. Computing Machinery
32(3):652–686.
Wylie, R.; Orchard, R.; Halasz, M.; and Dub, F. 1997.
IDS: Improving aircraft fleet maintenance. In Proc.
14th Nat’l Conf. Innovative Applications of Artificial
Intelligence (IAAI-97), 1078–1085.
Xiang, Y. 1996. A probabilistic framework for co-
operative multi-agent distributed interpretation and
optimization of communication. Artificial Intelligence
87(1):295–342.


